CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3193-3201.DOI: 10.11949/0438-1157.20220240

• Surface and interface engineering • Previous Articles     Next Articles

Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance

Shuyan WANG1,2(),Ruiyang ZHANG2(),Run LIU2,Kai LIU2,Ying ZHOU1,2()   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2022-02-24 Revised:2022-05-05 Online:2022-08-01 Published:2022-07-05
  • Contact: Ruiyang ZHANG,Ying ZHOU

Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究

王姝焱1,2(),张瑞阳2(),刘润2,刘凯2,周莹1,2()   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.西南石油大学新能源与材料学院,四川 成都 610500
  • 通讯作者: 张瑞阳,周莹
  • 作者简介:王姝焱(1997—),女,硕士研究生,wangsy3102@163.com
  • 基金资助:
    四川省重大科技专项(2020ZDZX0008);西南石油大学“启航计划”项目(2021QHZ015)

Abstract:

Nowadays, ground-level ozone has emerged as a strong candidate pollutant for PM2.5. Catalytic ozone decomposition is widely considered to be the most promising method to remove ozone. However, its practical application is severely restricted by the poor moisture resistance of the catalyst. In this paper, a novel manganese borate/oxygen-doped boron nitride [Mn(BO2)2/BNO] composite was successfully obtained based on in situ growth strategy. The strong interfacial interaction between the two components induces electron directional transfer from BNO to Mn(BO2)2, which not only promotes the decomposition of ozone, but also reduces the water adsorption capacity to avoid the poison of active sites by water molecules. Ozone decomposition performance test shows that 10% Mn/BNO [10% molar ratio of Mn(BO2)2 loaded on BNO] exhibits the best ozone removal performance of 92% at a relative humidity of 60% after 20 min. This provides a new design idea for obtaining ozonolysis catalytic materials with excellent performance.

Key words: Mn(BO2)2/BNO, interface, ozone decomposition, catalysis, water-resistance, electron transfer, composites

摘要:

近年来,近地面臭氧已成为我国仅次于PM2.5的大气污染物。催化臭氧分解技术具有条件温和、绿色环保的优点,被认为是极具潜力的臭氧治理技术。然而,水对催化剂的毒害作用是制约催化臭氧分解技术实际应用的重要问题之一。基于原位生长策略,制备了新型偏硼酸锰/氧掺杂氮化硼[Mn(BO2)2/BNO]臭氧分解催化剂。Mn(BO2)2与BNO界面之间强烈的相互作用诱导电子定向转移至Mn(BO2)2,不仅促进了臭氧的分解,而且抑制了水的吸附,避免了水对活性位点的毒害作用。催化活性测试表明,10%Mn(BO2)2负载BNO样品在60%湿度下20 min内表现出最高的臭氧分解性能(92%)。这为获得优异性能的臭氧分解催化材料提供了新的设计思路。

关键词: 偏硼酸锰/氧掺杂氮化硼, 界面, 臭氧分解, 催化作用, 抗湿性能, 电子转移, 复合材料

CLC Number: