CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4718-4729.DOI: 10.11949/0438-1157.20210123
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Li YANG1(),Yundong SUN1,Yong JIAO1,Ye YANG2,Jianbiao CHEN1,Chuanhua LIAO2()
Received:
2021-01-19
Revised:
2021-03-16
Online:
2021-09-05
Published:
2021-09-05
Contact:
Chuanhua LIAO
杨丽1(),孙赟冬1,焦勇1,杨烨2,陈建标1,廖传华2()
通讯作者:
廖传华
作者简介:
杨丽(1975—),女,博士,副教授,基金资助:
CLC Number:
Li YANG, Yundong SUN, Yong JIAO, Ye YANG, Jianbiao CHEN, Chuanhua LIAO. Synergistic catalytic mechanism of ash in pyrolysis and gasification of textile dyeing sludge[J]. CIESC Journal, 2021, 72(9): 4718-4729.
杨丽, 孙赟冬, 焦勇, 杨烨, 陈建标, 廖传华. 灰分在印染污泥热解气化中的协同催化机理[J]. 化工学报, 2021, 72(9): 4718-4729.
Add to citation manager EndNote|Ris|BibTeX
Na2O | MgO | Al2O3 | K2O | CaO | MnO | Fe2O3 | ZnO |
---|---|---|---|---|---|---|---|
1.46 | 0.24 | 0.41 | 0.07 | 1.01 | 0.22 | 33.87 | 3.25 |
Table 3 The main composition of textile dyeing sludge ash/(% mass)
Na2O | MgO | Al2O3 | K2O | CaO | MnO | Fe2O3 | ZnO |
---|---|---|---|---|---|---|---|
1.46 | 0.24 | 0.41 | 0.07 | 1.01 | 0.22 | 33.87 | 3.25 |
样品 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Nad | Sad | Oad | ||
印染污泥 | 1.59 | 55.45 | 42.2 | 0.76 | 15.82 | 2.79 | 1.6 | 5.09 | 30.91 | |
锯末 | 5.21 | 68.84 | 3.19 | 22.76 | 48.66 | 5.81 | 0.3 | 0.20 | 36.63 |
Table 1 Proximate analysis and ultimate analysis of raw materials
样品 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | FCad | Cad | Had | Nad | Sad | Oad | ||
印染污泥 | 1.59 | 55.45 | 42.2 | 0.76 | 15.82 | 2.79 | 1.6 | 5.09 | 30.91 | |
锯末 | 5.21 | 68.84 | 3.19 | 22.76 | 48.66 | 5.81 | 0.3 | 0.20 | 36.63 |
Pb | Cr | Cd | Cu | Zn | Ni |
---|---|---|---|---|---|
40.20 | 310.06 | 1.36 | 113.79 | 8773.8 | 74.56 |
Table 2 Heavy metal content of textile dyeing sludge/(μg/g)
Pb | Cr | Cd | Cu | Zn | Ni |
---|---|---|---|---|---|
40.20 | 310.06 | 1.36 | 113.79 | 8773.8 | 74.56 |
参数 | 印染污泥 | 模拟灰分 | Fe2O3 | ZnO | CaO | Na2CO3 |
---|---|---|---|---|---|---|
Tmax/℃ | 801 | 793 | 861 | 912 | 707 | 902 |
DTGmax/(%/min) | -2.37 | -2.32 | -0.91 | -3.94 | -1.40 | -2.87 |
ΔML | 12.23 | 12.80 | 9.69 | 23.25 | 6.57 | 16.67 |
Table 4 Main pyrolysis characteristic parameters under different additives
参数 | 印染污泥 | 模拟灰分 | Fe2O3 | ZnO | CaO | Na2CO3 |
---|---|---|---|---|---|---|
Tmax/℃ | 801 | 793 | 861 | 912 | 707 | 902 |
DTGmax/(%/min) | -2.37 | -2.32 | -0.91 | -3.94 | -1.40 | -2.87 |
ΔML | 12.23 | 12.80 | 9.69 | 23.25 | 6.57 | 16.67 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | 链状化合物 | ||||
甲苯 | 4.42 | 2.73 | 醋酸 | 2.39 | 22.35 |
苯并环丁烯 | 7.49 | 1.33 | 2-甲基丙醇 | 4.65 | 3.82 |
邻甲氧基苯酚 | 13.53 | 5.26 | 正戊醛 | 13.71 | 1.83 |
2-甲氧基-4-甲基苯酚 | 16.58 | 2.44 | 壬醛 | 13.93 | 3.97 |
4-乙烯基-2-甲氧基苯酚 | 19.95 | 10.17 | 2-乙基己酸 | 14.66 | 10.35 |
3-甲氧基-4-羟基苯甲醛 | 22.43 | 7.36 | 酯类* | 16.91 | 0.53 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 13.09 | 壬酸 | 18.82 | 2.15 |
苯系 | 24.17 | 3.65 | 1-十三烯 | 19.27 | 0.79 |
苯炔 | 24.35 | 0.83 | 2-甲氧基-4-烯丙基酚 | 21.11 | 3.27 |
苯酯 | 32.80 | 2.88 | 酯类* | 21.51 | 0.71 |
脂环化合物 | 三乙二醇单丁醚 | 23.95 | 2.83 | ||
右旋萜二烯 | 11.61 | 14.94 | 十七烯 | 24.42 | 0.70 |
脂环烯烃 | 31.70 | 4.74 | 十五烷 | 24.61 | 1.24 |
含氧杂环 | 正十二酸 | 26.21 | 8.68 | ||
糠醛 | 6.13 | 1.98 | 烯烃* | 26.79 | 1.39 |
糠醇 | 8.63 | 1.23 | 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 | 26.98 | 1.92 |
呋喃酮 | 10.47 | 12.21 | 己二酸二异丁酯 | 28.92 | 0.95 |
某含氧环烃* | 14.25 | 4.71 | 十四酸 | 30.57 | 0.76 |
含氮杂环 | 十六酸 | 34.60 | 12.02 | ||
某含氮胺类* | 5.10 | 3.83 | 酮类* | 35.54 | 0.35 |
某含氮环烃* | 9.71 | 0.91 | 马来酸二乙基己酯 | 37.37 | 7.06 |
3-甲胺基丙腈 | 13.77 | 0.87 | 十八烷酸 | 37.49 | 7.25 |
N-丁基乙酰胺 | 15.92 | 1.43 | |||
十四胺 | 15.96 | 1.02 |
Table 5 Pyrolysis products of pure sawdust
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | 链状化合物 | ||||
甲苯 | 4.42 | 2.73 | 醋酸 | 2.39 | 22.35 |
苯并环丁烯 | 7.49 | 1.33 | 2-甲基丙醇 | 4.65 | 3.82 |
邻甲氧基苯酚 | 13.53 | 5.26 | 正戊醛 | 13.71 | 1.83 |
2-甲氧基-4-甲基苯酚 | 16.58 | 2.44 | 壬醛 | 13.93 | 3.97 |
4-乙烯基-2-甲氧基苯酚 | 19.95 | 10.17 | 2-乙基己酸 | 14.66 | 10.35 |
3-甲氧基-4-羟基苯甲醛 | 22.43 | 7.36 | 酯类* | 16.91 | 0.53 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 13.09 | 壬酸 | 18.82 | 2.15 |
苯系 | 24.17 | 3.65 | 1-十三烯 | 19.27 | 0.79 |
苯炔 | 24.35 | 0.83 | 2-甲氧基-4-烯丙基酚 | 21.11 | 3.27 |
苯酯 | 32.80 | 2.88 | 酯类* | 21.51 | 0.71 |
脂环化合物 | 三乙二醇单丁醚 | 23.95 | 2.83 | ||
右旋萜二烯 | 11.61 | 14.94 | 十七烯 | 24.42 | 0.70 |
脂环烯烃 | 31.70 | 4.74 | 十五烷 | 24.61 | 1.24 |
含氧杂环 | 正十二酸 | 26.21 | 8.68 | ||
糠醛 | 6.13 | 1.98 | 烯烃* | 26.79 | 1.39 |
糠醇 | 8.63 | 1.23 | 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 | 26.98 | 1.92 |
呋喃酮 | 10.47 | 12.21 | 己二酸二异丁酯 | 28.92 | 0.95 |
某含氧环烃* | 14.25 | 4.71 | 十四酸 | 30.57 | 0.76 |
含氮杂环 | 十六酸 | 34.60 | 12.02 | ||
某含氮胺类* | 5.10 | 3.83 | 酮类* | 35.54 | 0.35 |
某含氮环烃* | 9.71 | 0.91 | 马来酸二乙基己酯 | 37.37 | 7.06 |
3-甲胺基丙腈 | 13.77 | 0.87 | 十八烷酸 | 37.49 | 7.25 |
N-丁基乙酰胺 | 15.92 | 1.43 | |||
十四胺 | 15.96 | 1.02 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | L-(-)-甘油醛 | 2.31 | 2.68 | ||
甲苯 | 4.58 | 10.07 | 3-甲基-2-丁酮 | 2.46 | 85.38 |
邻二甲苯 | 6.98 | 7.87 | 醋酸 | 2.73 | 201.17 |
苯酚 | 10.45 | 10.37 | 2-丁烯醛 | 2.94 | 29.49 |
4-甲基苯酚 | 13.24 | 5.9 | 羟基丙酮 | 3.07 | 192.02 |
邻甲氧基苯酚 | 13.53 | 117.91 | 2,4-戊二酮 | 3.42 | 11.22 |
2,4-二甲基苯酚 | 15.35 | 1.54 | 乙醚 | 3.73 | 6.38 |
2,5-二羟基苯甲醛 | 15.80 | 0.12 | 2-甲基丙烯酸酐 | 3.77 | 4.17 |
2-甲氧基-4-甲基苯酚 | 16.58 | 98.74 | 1,3-丁二烯 | 4.24 | 2.78 |
3,4-二甲氧基甲苯 | 17.89 | 2.83 | (E)-2-甲基-2-丁烯醛 | 4.33 | 3.34 |
4-乙烯基-2-甲氧基苯酚 | 19.96 | 141.59 | 2-丁炔酸 | 4.41 | 5.92 |
2-甲氧基-4-丙基苯酚 | 21.37 | 4.99 | 1-羟基-2-丁酮 | 4.63 | 6.13 |
3-甲氧基-4-羟基苯甲醛 | 22.33 | 2.55 | 乙酸甲酯 | 4.68 | 101.92 |
4-丙烯基-2-甲氧基苯酚 | 22.43 | 18.95 | 3,3-二甲基丙烯醛 | 4.76 | 21.14 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 58.79 | 丁二醛 | 4.89 | 70.16 |
4-羟基-3-甲氧基苯丙酮 | 23.92 | 1.64 | 丙酮酸甲酯 | 5.09 | 115.83 |
苯系 | 24.36 | 1.14 | 乙烯基乙酸 | 5.79 | 5.12 |
4-羟基-3-甲氧基苯乙酮 | 24.61 | 3.49 | 1,6-庚二烯-4-醇 | 6.02 | 7.52 |
2-甲氧基-4-烯丙基酚 | 21.11 | 39.76 | 乙酰氧基-2-丙酮 | 7.06 | 23.17 |
Table 6 Pyrolysis products of mixed raw material with 50%(mass) textile dyeing sludge
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
苯系化合物 | L-(-)-甘油醛 | 2.31 | 2.68 | ||
甲苯 | 4.58 | 10.07 | 3-甲基-2-丁酮 | 2.46 | 85.38 |
邻二甲苯 | 6.98 | 7.87 | 醋酸 | 2.73 | 201.17 |
苯酚 | 10.45 | 10.37 | 2-丁烯醛 | 2.94 | 29.49 |
4-甲基苯酚 | 13.24 | 5.9 | 羟基丙酮 | 3.07 | 192.02 |
邻甲氧基苯酚 | 13.53 | 117.91 | 2,4-戊二酮 | 3.42 | 11.22 |
2,4-二甲基苯酚 | 15.35 | 1.54 | 乙醚 | 3.73 | 6.38 |
2,5-二羟基苯甲醛 | 15.80 | 0.12 | 2-甲基丙烯酸酐 | 3.77 | 4.17 |
2-甲氧基-4-甲基苯酚 | 16.58 | 98.74 | 1,3-丁二烯 | 4.24 | 2.78 |
3,4-二甲氧基甲苯 | 17.89 | 2.83 | (E)-2-甲基-2-丁烯醛 | 4.33 | 3.34 |
4-乙烯基-2-甲氧基苯酚 | 19.96 | 141.59 | 2-丁炔酸 | 4.41 | 5.92 |
2-甲氧基-4-丙基苯酚 | 21.37 | 4.99 | 1-羟基-2-丁酮 | 4.63 | 6.13 |
3-甲氧基-4-羟基苯甲醛 | 22.33 | 2.55 | 乙酸甲酯 | 4.68 | 101.92 |
4-丙烯基-2-甲氧基苯酚 | 22.43 | 18.95 | 3,3-二甲基丙烯醛 | 4.76 | 21.14 |
(E)-2-甲氧基-4-(1-丙烯基苯酚) | 23.47 | 58.79 | 丁二醛 | 4.89 | 70.16 |
4-羟基-3-甲氧基苯丙酮 | 23.92 | 1.64 | 丙酮酸甲酯 | 5.09 | 115.83 |
苯系 | 24.36 | 1.14 | 乙烯基乙酸 | 5.79 | 5.12 |
4-羟基-3-甲氧基苯乙酮 | 24.61 | 3.49 | 1,6-庚二烯-4-醇 | 6.02 | 7.52 |
2-甲氧基-4-烯丙基酚 | 21.11 | 39.76 | 乙酰氧基-2-丙酮 | 7.06 | 23.17 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
脂环化合物 | 炔烃* | 7.56 | 6.18 | ||
甲基环丁烷 | 2.37 | 5.61 | 4-羟基丁酸乙酰酯 | 8.30 | 7.30 |
1,4-环己二烯 | 2.84 | 0.31 | 5,6-二氢-2H-吡喃-2-酮 | 9.22 | 7.62 |
环丙甲基酮 | 3.16 | 1.20 | 1,2-戊二烯 | 9.79 | 7.16 |
甲基1-甲基环丙基 | 3.27 | 0.81 | 顺-2-戊烯-1-醇 | 9.85 | 8.22 |
环己烯 | 7.61 | 0.73 | 4-辛炔 | 12.03 | 4.29 |
2-环戊烯-1-酮 | 8.66 | 9.18 | 烷烃* | 12.29 | 2.28 |
2(5H)-呋喃酮 | 9.09 | 0.49 | 2-甲酚 | 12.59 | 6.24 |
环丙甲酸 | 10.51 | 0.89 | 正辛烷 | 12.87 | 3.46 |
右旋萜二烯 | 11.64 | 0.28 | 戊二醛 | 13.71 | 23.99 |
甲基环戊烯醇酮 | 11.73 | 4.63 | 壬醛 | 13.95 | 11.11 |
乙基环戊烯醇酮 | 14.47 | 0.29 | 酮类* | 14.06 | 4.04 |
2-甲基环戊酮 | 15.49 | 0.21 | 2-乙基己酸 | 14.58 | 2.56 |
含氧杂环 | 1-十四烯 | 21.92 | 7.04 | ||
烯烃* | 16.91 | 1.80 | |||
2-甲基呋喃 | 2.54 | 5.83 | 壬酸 | 18.83 | 3.11 |
碳酸亚乙烯酯 | 3.59 | 2.44 | 1-十三烯 | 19.27 | 3.73 |
某含氧环烃* | 3.83 | 0.32 | 1-十四烯 | 21.92 | 7.40 |
4-甲基-2(H)-呋喃酮 | 4.12 | 1.18 | 呋喃酚 | 22.12 | 1.18 |
糠醛 | 6.08 | 8.07 | 2,3,5,6-四氟茴香醚 | 26.32 | 1.61 |
4-羟基-3-戊烯酸内酯 | 7.02 | 0.43 | 含氮杂环 | ||
2-乙酰基呋喃 | 8.22 | 0.43 | 2-氨基??唑 | 5.27 | 83.79 |
2(5H)-呋喃酮 | 8.39 | 1.23 | 4-甲基-1,3-二氢咪唑-2-酮 | 5.89 | 8.07 |
5-甲基呋喃醛 | 9.75 | 1.52 | 某含氮环烃* | 6.28 | 24.21 |
α-吡喃酮 | 10.24 | 2.52 | 2-吡咯烷酮 | 9.96 | 18.00 |
2-呋喃甲酸 | 11.48 | 0.35 | 1,3-二甲基-2-咪唑啉酮 | 10.90 | 15.55 |
糠醇 | 14.26 | 0.32 | 2-甲基哌嗪 | 12.65 | 46.65 |
链状化合物 | 某含氮环烃* | 13.43 | 15.49 | ||
丙酮醛 | 2.09 | 263.15 | 1,4-二甲基哌嗪 | 16.39 | 32.70 |
2-甲基-1-丁烯-3-炔 | 2.24 | 5.14 | |||
丙烯醇 | 2.28 | 1.06 |
化合物 | 停留时间/min | 峰面积×10-6 | 化合物 | 停留时间/min | 峰面积×10-6 |
---|---|---|---|---|---|
脂环化合物 | 炔烃* | 7.56 | 6.18 | ||
甲基环丁烷 | 2.37 | 5.61 | 4-羟基丁酸乙酰酯 | 8.30 | 7.30 |
1,4-环己二烯 | 2.84 | 0.31 | 5,6-二氢-2H-吡喃-2-酮 | 9.22 | 7.62 |
环丙甲基酮 | 3.16 | 1.20 | 1,2-戊二烯 | 9.79 | 7.16 |
甲基1-甲基环丙基 | 3.27 | 0.81 | 顺-2-戊烯-1-醇 | 9.85 | 8.22 |
环己烯 | 7.61 | 0.73 | 4-辛炔 | 12.03 | 4.29 |
2-环戊烯-1-酮 | 8.66 | 9.18 | 烷烃* | 12.29 | 2.28 |
2(5H)-呋喃酮 | 9.09 | 0.49 | 2-甲酚 | 12.59 | 6.24 |
环丙甲酸 | 10.51 | 0.89 | 正辛烷 | 12.87 | 3.46 |
右旋萜二烯 | 11.64 | 0.28 | 戊二醛 | 13.71 | 23.99 |
甲基环戊烯醇酮 | 11.73 | 4.63 | 壬醛 | 13.95 | 11.11 |
乙基环戊烯醇酮 | 14.47 | 0.29 | 酮类* | 14.06 | 4.04 |
2-甲基环戊酮 | 15.49 | 0.21 | 2-乙基己酸 | 14.58 | 2.56 |
含氧杂环 | 1-十四烯 | 21.92 | 7.04 | ||
烯烃* | 16.91 | 1.80 | |||
2-甲基呋喃 | 2.54 | 5.83 | 壬酸 | 18.83 | 3.11 |
碳酸亚乙烯酯 | 3.59 | 2.44 | 1-十三烯 | 19.27 | 3.73 |
某含氧环烃* | 3.83 | 0.32 | 1-十四烯 | 21.92 | 7.40 |
4-甲基-2(H)-呋喃酮 | 4.12 | 1.18 | 呋喃酚 | 22.12 | 1.18 |
糠醛 | 6.08 | 8.07 | 2,3,5,6-四氟茴香醚 | 26.32 | 1.61 |
4-羟基-3-戊烯酸内酯 | 7.02 | 0.43 | 含氮杂环 | ||
2-乙酰基呋喃 | 8.22 | 0.43 | 2-氨基??唑 | 5.27 | 83.79 |
2(5H)-呋喃酮 | 8.39 | 1.23 | 4-甲基-1,3-二氢咪唑-2-酮 | 5.89 | 8.07 |
5-甲基呋喃醛 | 9.75 | 1.52 | 某含氮环烃* | 6.28 | 24.21 |
α-吡喃酮 | 10.24 | 2.52 | 2-吡咯烷酮 | 9.96 | 18.00 |
2-呋喃甲酸 | 11.48 | 0.35 | 1,3-二甲基-2-咪唑啉酮 | 10.90 | 15.55 |
糠醇 | 14.26 | 0.32 | 2-甲基哌嗪 | 12.65 | 46.65 |
链状化合物 | 某含氮环烃* | 13.43 | 15.49 | ||
丙酮醛 | 2.09 | 263.15 | 1,4-二甲基哌嗪 | 16.39 | 32.70 |
2-甲基-1-丁烯-3-炔 | 2.24 | 5.14 | |||
丙烯醇 | 2.28 | 1.06 |
1 | 国家生态环境部. 2015年环境统计年报[R]. 北京: 环境保护部, 2015: 15-16. |
Ministry of Ecology and Environment of the People′s Republic of China. Annual report of environmental data statistics[R]. Beijing: Ministry of Environmental Protection, 2015: 15-16. | |
2 | 王玉婷, 赵泽华, 王逸, 等. 我国典型印染行业废水处理污泥污染特征研究[J]. 生态与农村环境学报, 2020, 36(12): 1598-1604. |
Wang Y T, Zhao Z H, Wang Y, et al. Study on the pollution characteristics of typical textile dyeing sludge (TDS) in China[J]. Journal of Ecology and Rural Environment, 2020, 36(12): 1598-1604. | |
3 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
4 | Veses A, Sanahuja-Parejo O, Callén M S, et al. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels[J]. Waste Management, 2020, 101: 171-179. |
5 | Fang S W, Yu Z S, Lin Y, et al. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis[J]. Bioresource Technology, 2016, 209: 265-272. |
6 | Song Q, Zhao H Y, Xing W L, et al. Effects of various additives on the pyrolysis characteristics of municipal solid waste[J]. Waste Management, 2018, 78: 621-629. |
7 | MA·hadevan R, Adhikari S, Shakya R, et al. Effect of alkali and alkaline earth metals on in situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study[J]. Energy & Fuels, 2016, 30(4): 3045-3056. |
8 | Gao N B, Sipra A T, Quan C. Thermogravimetric analysis and pyrolysis product characterization of municipal solid waste using sludge fly ash as additive[J]. Fuel, 2020, 281: 118572. |
9 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.固体生物质燃料工业分析方法: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Proximate analysis of solid biofuels: [S]. Beijing: Standards Press of China, 2013. | |
10 | 中华人民共和国国家质量监督检验检疫总局.煤的元素分析方法: [S]. 北京: 中国标准出版社, 2004. |
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China. Ultimate analysis of coal: [S]. Beijing: Standards Press of China, 2004. | |
11 | Zhang W J, Yuan C Y, Xu J, et al. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor[J]. Bioresource Technology, 2015, 183: 255-258. |
12 | 金湓, 李宝霞. 生物质与污水污泥共热解特性研究[J]. 可再生能源, 2014, 32(2): 234-239. |
Jin P, Li B X. The study of co-pyrolysis characteristics of the biomass and sewage sludge[J]. Renewable Energy Resources, 2014, 32(2): 234-239. | |
13 | Jin J W, Wang M Y, Cao Y C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226. |
14 | Gao H J, Zhu Y Z, Fu F, et al. Pyrolysis of Hailar lignite in an autogenerated steam agent[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 973-978. |
15 | Yang Y, Zhu J J, Zhu G K, et al. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1783-1794. |
16 | Zhu J J, Yang Y, Yang L, et al. High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5463-5472. |
17 | Li T T, Guo F Q, Li X L, et al. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis[J]. Waste Management, 2018, 76: 544-554. |
18 | 彭海军, 李志光, 夏兴良, 等. 污泥热解残渣催化市政破膜污泥的热解作用[J]. 环境化学, 2014, 33(3): 508-514. |
Peng H J, Li Z G, Xia X L, et al. Catalysis of sludge residual carbon to municipal disintegration-membrance sludge pyrolysis[J]. Environmental Chemistry, 2014, 33(3): 508-514. | |
19 | Zou C, Ma C, Zhao J X, et al. Characterization and non-isothermal kinetics of Shenmu bituminous coal devolatilization by TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 309-320. |
20 | Hu M, Gao L, Chen Z H, et al. Syngas production by catalytic in situ steam co-gasification of wet sewage sludge and pine sawdust[J]. Energy Conversion and Management, 2016, 111: 409-416. |
21 | Xiong S J, Zhuo J K, Zhang B P, et al. Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 632-639. |
22 | Fan H J, Zhou H, Wang J. Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor[J]. Energy Conversion and Management, 2014, 88: 1151-1158. |
23 | Wang M, Li Z S, Huang W B, et al. Coal pyrolysis characteristics by TG-MS and its late gas generation potential[J]. Fuel, 2015, 156: 243-253. |
24 | Fang S W, Yu Z S, Ma X Q, et al. Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2017, 144: 114-122. |
25 | Brebu M, Tamminen T, Spiridon I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 531-539. |
26 | Zhou P, Xiong S J, Zhang Y X, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18181-18188. |
27 | Chen L, Wang X H, Yang H P, et al. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 499-507. |
28 | Liu S Y, Zhang Y N, Fan L L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196: 261-268. |
29 | Xie C D, Liu J Y, Zhang X C, et al. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Applied Energy, 2018, 212: 786-795. |
30 | Liu Y H, Cao X, Duan X L, et al. Thermal analysis on combustion characteristics of predried dyeing sludge[J]. Applied Thermal Engineering, 2018, 140: 158-165. |
31 | Xie W H, Huang J L, Liu J Y, et al. Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse[J]. Applied Thermal Engineering, 2018, 131: 874-883. |
32 | Xie W H, Wen S T, Liu J Y, et al. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: thermal conversion characteristics, kinetics, and thermodynamics[J]. Bioresource Technology, 2018, 255: 88-95. |
33 | Zhuo Z X, Liu J Y, Sun S Y, et al. Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres[J]. Applied Thermal Engineering, 2017, 111: 87-94. |
34 | Hu Z F, Ma X Q, Chen Y M, et al. Co-combustion of coal with printing and dyeing sludge: numerical simulation of the process and related NOx emissions[J]. Fuel, 2015, 139: 606-613. |
35 | Peng X W, Ma X Q, Xu Z B. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge[J]. Bioresource Technology, 2015, 180: 288-295. |
36 | 刘敬勇, 卓钟旭, 宁寻安, 等. 印染污泥混燃特性及其燃烧动力学模型[J]. 环境科学学报, 2016, 36(4): 1286-1297. |
Liu J Y, Zhuo Z X, Ning X A, et al. Co-combustion characteristics of textile dyeing sludge and its combustion kinetics model[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1286-1297. | |
37 | Huang Q X, Wang J, Qiu K Z, et al. Catalytic pyrolysis of petroleum sludge for production of hydrogen-enriched syngas[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16077-16085. |
38 | Fang S W, Gu W L, Chen L, et al. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test[J]. Bioresource Technology, 2018, 258: 5-11. |
39 | Cheng S, Wang Y H, Gao N B, et al. Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 511-520. |
40 | Azuara M, Fonts I, Bimbela F, et al. Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties[J]. Fuel Processing Technology, 2015, 130: 252-262. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Ke YANG, Yue JIA, Hong JI, Zhixiang XING, Juncheng JIANG. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. CIESC Journal, 2023, 74(8): 3597-3607. |
[5] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[8] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[9] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[15] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||