CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3839-3848.DOI: 10.11949/0438-1157.20210198
• Material science and engineering, nanotechnology • Previous Articles Next Articles
XIA Dong1(),HUANG Peng2,LI Heng3()
Received:
2021-02-03
Revised:
2021-06-15
Online:
2021-07-05
Published:
2021-07-05
Contact:
LI Heng
通讯作者:
李恒
作者简介:
夏东(1990—),男,博士,基金资助:
CLC Number:
XIA Dong, HUANG Peng, LI Heng. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly[J]. CIESC Journal, 2021, 72(7): 3839-3848.
夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848.
Add to citation manager EndNote|Ris|BibTeX
名称 | 规格 | 生产厂家 |
---|---|---|
氧化石墨烯 | 直径为0.3~0.7 cm的薄片 | William Blythe Limited |
抗坏血酸 | AR | Sigma-Aldrich |
水 | HPLC | Fisher Scientific, UK |
Table 1 Chemical and reagents
名称 | 规格 | 生产厂家 |
---|---|---|
氧化石墨烯 | 直径为0.3~0.7 cm的薄片 | William Blythe Limited |
抗坏血酸 | AR | Sigma-Aldrich |
水 | HPLC | Fisher Scientific, UK |
直径/m | 高度/m | 密度/ (mg?cm-3) | 电导率,σ/ (S·m-1) | 热导率,κ/ (W?(m-1?K-1)) | 焦耳热温度,T(at 2W)/℃ |
---|---|---|---|---|---|
0.015 | 0.012 | 15.4 | 9.0 | 0.222 | 128 |
Table 2 Physical and electrothermal parameters of the as-prepared rHT-GO aerogel
直径/m | 高度/m | 密度/ (mg?cm-3) | 电导率,σ/ (S·m-1) | 热导率,κ/ (W?(m-1?K-1)) | 焦耳热温度,T(at 2W)/℃ |
---|---|---|---|---|---|
0.015 | 0.012 | 15.4 | 9.0 | 0.222 | 128 |
Fig.7 Fitted curve of models, description of the temperature record at different position and thermal temperature gradient fitting method and curve of the rHT-GO aerogel
1 | 刘海波, 王成辉, 周茜, 等. 石墨烯在金属基复合材料中的应用研究与进展[J]. 热加工工艺, 2020, 49(24): 8-14, 20. |
Liu H B, Wang C H, Zhou Q, et al. Application research and progress of graphene in metal matrix composite[J]. Hot Working Technology, 2020, 49(24): 8-14, 20. | |
2 | 陈站, 刘晓国, 宋松林, 等. 石墨烯及氧化石墨烯应用在电性能涂料中的研究进展[J]. 电镀与涂饰, 2020, 39(10): 660-664. |
Chen Z, Liu X G, Song S L, et al. Research progress on applications of graphene and graphene oxide in electrical coatings[J]. Electroplating & Finishing, 2020, 39(10): 660-664. | |
3 | 覃荣华, 曾丹林, 王荣, 等. 石墨烯基催化材料的制备及其应用研究进展[J]. 化工新型材料, 2020, 48(12): 29-33. |
Qin R H, Zeng D L, Wang R, et al. Review in preparation and application of rGO-based catalytic material[J]. New Chemical Materials, 2020, 48(12): 29-33. | |
4 | Xia D, Li H, Mannering J, et al. Electrically heatable graphene aerogels as nanoparticle supports in adsorptive desulfurization and high-pressure CO2 capture[J]. Advanced Functional Materials, 2020, 30(40): 2002788. |
5 | Cheng C, Li S, Thomas A, et al. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications[J]. Chemical Reviews, 2017, 117(3): 1826-1914. |
6 | Li J S, Wang Y, Liu C H, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Nature Communications, 2016, 7: 11204. |
7 | Sriwong C, Choojun K, Kongtaweelert S. Investigation of the influences of reaction temperature and time on the chemical reduction of graphene oxide by conventional method using vitamin C as a reducing agent[J]. Materials Science Forum, 2017, 909: 225-230. |
8 | Liu Y J, Li P, Wang F, et al. Rapid roll-to-roll production of graphene films using intensive Joule heating[J]. Carbon, 2019, 155: 462-468. |
9 | Ren L, Wang M, Lu S, et al. Tailoring thermal transport properties of graphene paper by structural engineering[J]. Scientific Reports, 2019, 9(1): 4549. |
10 | 安飞, 孙冰, 李娜, 等. 三维石墨烯的制备及其在电阻型气体传感器领域的应用[J]. 材料工程, 2020, 48(12): 24-35. |
An F, Sun B, Li N, et al. Research on the fabrication of 3D graphene and its application in chemiresistive gas sensors[J]. Journal of Materials Engineering, 2020, 48(12): 24-35. | |
11 | Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials[J]. Chemical Society Reviews, 2016, 45(20): 5541-5588. |
12 | Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896. |
13 | Yousefi N, Lu X L, Elimelech M, et al. Environmental performance of graphene-based 3D macrostructures[J]. Nature Nanotechnology, 2019, 14(2): 107-119. |
14 | Zhang X T, Sui Z Y, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494-6497. |
15 | Zhou G H, Kim N R, Chun S E, et al. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors[J]. Carbon, 2018, 130: 137-144. |
16 | Han Z, Tang Z, Li P, et al. Ammonia solution strengthened three-dimensional macro-porous graphene aerogel[J]. Nanoscale, 2013, 5(12): 5462-5467. |
17 | Zhang Q Q, Wang Y, Zhang B Q, et al. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes[J]. Carbon, 2018, 127: 449-458. |
18 | Fu Y, Wang G, Mei T, et al. Accessible graphene aerogel for efficiently harvesting solar energy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4665-4671. |
19 | Deerattrakul V, Yigit N, Rupprechter G, et al. The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2019, 580: 46-52. |
20 | Barg S, Perez F M, Ni N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications, 2014, 5: 4328. |
21 | Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962. |
22 | Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 2012, 24(37): 5130-5135. |
23 | Li J, Li J, Meng H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9): 2934-2941. |
24 | Menzel R, Barg S, Miranda M, et al. Joule heating characteristics of emulsion-templated graphene aerogels[J]. Advanced Functional Materials, 2015, 25(1): 28-35. |
25 | Xia D, Li H, Huang P. Understanding the Joule-heating behaviours of electrically-heatable carbon-nanotube aerogels[J]. Nanoscale Advances, 2021, 3(3): 647-652. |
26 | Xia D, Li H, Huang P, et al. Boron-nitride/carbon-nanotube hybrid aerogels as multifunctional desulfurisation agents[J]. Journal of Materials Chemistry A, 2019, 7(41): 24027-24037. |
27 | Liu T, Huang M L, Li X F, et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016, 100: 456-464. |
28 | Li T, Pickel A D, Yao Y G, et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3, 000 K[J]. Nature Energy, 2018, 3(2): 148-156. |
29 | Hong J Y, Sohn E H, Park S, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel[J]. Chemical Engineering Journal, 2015, 269: 229-235. |
30 | Xia D, Huang P, Li H, et al. Fast and efficient electrical-thermal responses of functional nanoparticle decorated nanocarbon aerogels[J]. Chemical Communications, 2020, 56(92): 14393-14396. |
31 | Bao W Z, Pickel A D, Zhang Q, et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper[J]. Advanced Materials, 2016, 28(23): 4684-4691. |
32 | Wang K, Zeng Y J, Lin W Z, et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths[J]. Carbon, 2020, 167: 709-717. |
33 | Xia D, Xu Y F, Mannering J, et al. Tuning the electrical and solar thermal heating efficiencies of nanocarbon aerogels[J]. Chemistry of Materials, 2021, 33(1): 392-402. |
[1] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[2] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[3] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[4] | Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials [J]. CIESC Journal, 2022, 73(9): 3851-3860. |
[5] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
[6] | Huifang NIU, Lunjing YAN, Peng LYU, Xufeng ZHANG, Meijun WANG, Jiao KONG, Weiren BAO, Liping CHANG. Preparation and analysis of carbon aerogel microspheres based on coal tar pitch [J]. CIESC Journal, 2022, 73(12): 5605-5614. |
[7] | Qingling QIAN, Qing ZHU, Zhengjin YANG, Tongwen XU. Microporous Noria polymer for selective adsorption and separation of xylene isomers [J]. CIESC Journal, 2022, 73(12): 5438-5448. |
[8] | WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation [J]. CIESC Journal, 2021, 72(7): 3488-3510. |
[9] | WANG Yanqiu,ZHONG Zhaoxiang,XING Weihong. Progress in three-dimensional metal oxide nanomaterials [J]. CIESC Journal, 2021, 72(5): 2339-2353. |
[10] | Chunjie XIE, Ran HE, Xinlin TUO, Wantai YANG. Preparation and performance of para-aramid aerogel powders [J]. CIESC Journal, 2021, 72(12): 6361-6370. |
[11] | Yun ZHAO, Zhonghua XIANG. Progress of microfluidic synthesis of metal/covalent organic frameworks [J]. CIESC Journal, 2020, 71(6): 2547-2563. |
[12] | Li CHEN, Cailong ZHOU, Jingcheng DU, Wei ZHOU, Luxi TAN, Lichun DONG. Progress of superhydrophobic porous materials [J]. CIESC Journal, 2020, 71(10): 4502-4519. |
[13] | Qiuhui YAN,Xiaoyang SUN,Jieren LUO,Zhiju WU. Study on modification of glass wool/SiO2 aerogel combined board [J]. CIESC Journal, 2019, 70(S2): 363-368. |
[14] | Xuan ZHANG, Jiaxing YANG, Qiuyang JIN, Mingxing TONG, Junxi ZHOU, Jing GAO, Guohua LI. Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors [J]. CIESC Journal, 2019, 70(7): 2748-2757. |
[15] | Yuhan ZHOU, Xiaoyu CHEN, Cheng ZUO, Qingjie GUO, Jun ZHAO. Performances of waste paper cellulose/SiO2 composite aerogel [J]. CIESC Journal, 2019, 70(3): 1120-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||