CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2748-2757.DOI: 10.11949/0438-1157.20190106
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xuan ZHANG(),Jiaxing YANG,Qiuyang JIN,Mingxing TONG,Junxi ZHOU,Jing GAO(),Guohua LI()
Received:
2019-01-30
Revised:
2019-04-19
Online:
2019-07-05
Published:
2019-07-05
Contact:
Jing GAO,Guohua LI
张璇(),杨佳兴,金秋阳,佟明兴,周俊熹,高静(),李国华()
通讯作者:
高静,李国华
作者简介:
张璇(1994—),女,硕士研究生,<email>2111601105@zjut.edu.cn</email>
基金资助:
CLC Number:
Xuan ZHANG, Jiaxing YANG, Qiuyang JIN, Mingxing TONG, Junxi ZHOU, Jing GAO, Guohua LI. Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors[J]. CIESC Journal, 2019, 70(7): 2748-2757.
张璇, 杨佳兴, 金秋阳, 佟明兴, 周俊熹, 高静, 李国华. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7): 2748-2757.
Add to citation manager EndNote|Ris|BibTeX
1 | ZhangL L, ZhaoX S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. |
2 | 朱红艳, 赵建国, 庞明俊, 等. 石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J]. 化工学报, 2017, 68(12): 4824-4832. |
ZhuH Y, ZhaoJ G, PangM J, et al. Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12): 4824-4832. | |
3 | 周王帆, 陈新, 曹红亮, 等. 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7): 2918-2924. |
ZhouW F, ChenX, CaoH L, et al. Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. CIESC Journal, 2017, 68(7): 2918-2924. | |
4 | SalanneM, RotenbergB, NaoiK, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(16): 16070. |
5 | WangJ G, LiuH Z, SunH H, et al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors[J]. Carbon, 2018, 127: 85-92. |
6 | ChengP, LiT, YuH, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. Journal of Physical Chemistry C, 2016, 120(4): 2079-2086. |
7 | LiY Q, SamadY A, PolychronopoulouK, et al. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption[J]. ACS Sustainable Chemistry Engineering, 2014, 2(6): 1492-1497. |
8 | GueonD, MoonJ H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: emulsion-assisted compact packing and capacitance enhancement[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20083-20089. |
9 | DuY X, LiuL B, XiangY, et al. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent[J]. Journal of Power Sources, 2018, 379: 240-248. |
10 | MacíasC, RasinesG, LavelaP, et al. Mn-containing N-doped monolithic carbon aerogels with enhanced macroporosity as electrodes for capacitive deionization[J]. ACS Sustainable Chemistry Engineering, 2016, 4(5): 2487-2494. |
11 | LeeE J, LeeY J, KimJ K, et al. Preparation and characterization of nitrogen-enriched carbon aerogel as a supercapacitor electrode material[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(10): 10413-10419. |
12 | XieM J, DongH H, ZhangD D, et al. Simple synthesis of highly ordered mesoporous carbon by self-assembly of phenol–formaldehyde and block copolymers under designed aqueous basic/acidic conditions[J]. Carbon, 2011, 49(7): 2459-2464. |
13 | GuoJ, WuD L, WangT, et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J]. Applied Surface Science, 2019, 475: 56-66. |
14 | QuanX P, FuZ B, YuanL, et al. Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes[J]. RSC Advances, 2017, 7(57): 35875-35882. |
15 | YuZ L, LiG C, FechlerN, et al. Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels[J]. Angewandte Chemie International Edition, 2016, 55(47): 14623-14627. |
16 | FechlerN, WohlgemuthS A, PhilippJ, et al. Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions[J]. Journal of Materials Chemistry A, 2013, 1: 9418-9421. |
17 | ZengY, WangK, YaoJ F, et al. Hollow carbon beads fabricated by phase inversion method for efficient oil sorption[J]. Carbon, 2014, 69: 25-31. |
18 | YuM, LiJ, WangL. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption[J]. Chemical Engineering Journal, 2017, 310: 300-306. |
19 | LeeW H, MoonJ H. Monodispersed N-doped carbon nanospheres for supercapacitor application[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13968-13976. |
20 | ZhangJ L, ChenL, ZhanG Q, et al. Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12760-12766. |
21 | WeiX J, WanS G, GaoS Y. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors[J]. Nano Energy, 2016, 28: 206-215. |
22 | ShangH, ZuoZ C, ZhengH Y, et al. N-doped graphdiyne for high-performance electrochemical electrodes[J]. Nano Energy, 2018, 44: 144-154. |
23 | HanB, LeeE J, ChoiW H, et al. Three-dimensionally ordered mesoporous carbons activated by hot ammonia treatment as high-performance anode materials in lithium-ion batteries[J]. New Journal of Chemistry, 2015, 39(8): 6178-6185. |
24 | ChoiW H, ChoiM J, BangJ H. Nitrogen-doped carbon nanocoil array integrated on carbon nanofiber paper for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19370-19381. |
25 | GuW T, SevillaM, MagasinskiA, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8): 2465-2476. |
26 | MengQ S, QinK Q, MaL Y, et al. N-doped porous carbon nanofibers/porous silver network hybrid for high-rate supercapacitor electrode[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 30832-30839. |
27 | ChizariK, VenaA, LaurentiusL, et al. The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes[J]. Carbon, 2014, 68: 369-379. |
28 | MaK Y, ChengJ P, LiuF, et al. Co-Fe layered double hydroxides nanosheets vertically grown on carbon fiber cloth for electrochemical capacitors[J]. Journal of Alloys and Compounds, 2016, 679: 277-284. |
29 | ZhouJ, ZhangZ S, XingW, et al. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance[J]. Electrochimica Acta, 2015, 153: 68-75. |
30 | ZhangY, WenG W, GaoP, et al. High-performance supercapacitor of macroscopic graphene hydrogels by partial reduction and nitrogen doping of graphene oxide[J]. Electrochimica Acta, 2016, 221: 167-176. |
31 | ChenH, XiongY C, YuT, et al. Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior[J]. Carbon, 2017, 113: 266-273. |
32 | DaemsN, ShengX, VankelecomI F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2: 4085-4110. |
33 | YangJ, JoM R, KangM, et al. Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors[J]. Carbon, 2014, 73: 106-113. |
34 | DongY H, WangW X, QuanH Y, et al. Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors[J]. ChemElectroChem, 2016, 3(5): 814-821. |
35 | DuJ, LiuL, HuZ P, et al. Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors[J]. ACS Sustainable Chemistry Engineering, 2018, 6(3): 4008-4015. |
36 | SunG L, MaL Y, RanJ B, et al. Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors[J]. Electrochimica Acta, 2016, 194: 168-178. |
37 | MaoN, WangH L, SuiY, et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J]. Nano Research, 2017, 10: 1767-1783. |
38 | WangG Q, ZhangJ, KuangS, et al. Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electrochimica Acta, 2015, 153: 273-279. |
39 | CandelariaS L, UchakerE, CaoG. Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors[J]. Science China Materials, 2015, 58(7): 521-533. |
40 | HaoL, LiX L, ZhiL J. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904. |
41 | ShanD D, YangJ, LiuW, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4: 13589-13602. |
42 | FanX M, YuC, YangJ, et al. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors[J]. Carbon, 2014, 70: 130-141. |
43 | ChenH, ZhouM, WangZ, et al. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors[J]. Electrochimica Acta, 2014, 148: 187-194. |
44 | ChenH, WangG, ChenL, et al. Three-dimensional honeycomb-like porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrode[J]. Nanomaterials, 2018, 8(6): 412. |
45 | SunL, ZhouH, LiL, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26088-26095. |
46 | XiaK S, HuangZ Y, ZhengL, et al. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 365: 380-388. |
47 | ZhaoL, FanL Z, ZhouM Q, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010, 22(45): 5202-5206. |
48 | HeimböckelR, KraasS, HoffmannF, et al. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications[J]. Applied Surface Science, 2018, 427: 1055-1064. |
49 | WangZ, ZhouM, ChenH, et al. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors[J]. Chemistry-An Asian Journal, 2014, 9(10): 2789-2797. |
50 | WeiL, SevillaM, FuertesA B, et al. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1(3): 356-361. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[4] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[5] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[6] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[7] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[8] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[9] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[10] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[11] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[12] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[13] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[14] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[15] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||