CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4502-4519.DOI: 10.11949/0438-1157.20191305
• Reviews and monographs • Previous Articles Next Articles
Li CHEN(),Cailong ZHOU(),Jingcheng DU,Wei ZHOU,Luxi TAN,Lichun DONG
Received:
2019-11-01
Revised:
2019-12-24
Online:
2020-10-05
Published:
2020-10-05
Contact:
Cailong ZHOU
通讯作者:
周才龙
作者简介:
陈立(1994—),男,博士研究生,基金资助:
CLC Number:
Li CHEN, Cailong ZHOU, Jingcheng DU, Wei ZHOU, Luxi TAN, Lichun DONG. Progress of superhydrophobic porous materials[J]. CIESC Journal, 2020, 71(10): 4502-4519.
陈立, 周才龙, 杜京城, 周威, 谭陆西, 董立春. 超疏水多孔材料的研究进展[J]. 化工学报, 2020, 71(10): 4502-4519.
Add to citation manager EndNote|Ris|BibTeX
1 | Slater A G, Cooper A I. Function-led design of new porous materials[J]. Science, 2015, 348: aaa8075. |
2 | 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
3 | Cooper A I. Conjugated microporous polymers[J]. Adv. Mater., 2009, 21(12): 1291-1295. |
4 | Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012, 24(42): 5703-5707. |
5 | Du N, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energ. Environ. Sci., 2012, 5(6): 7306-7322. |
6 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310: 1166-1170. |
7 | Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. J. Am. Chem. Soc., 2018, 140: 10094-10098. |
8 | Jiang Y, Liu C, Li Y, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. J. Membr. Sci., 2019, 587: 117177. |
9 | Fang Q, Wang J, Gu S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. J. Am. Chem. Soc., 2015, 137(26): 8352-8355. |
10 | Xu H S, Ding S Y, An W K, et al. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. J. Am. Chem. Soc., 2016, 138(36): 11489-11492. |
11 | Xu F, Yang S, Jiang G, et al. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 37731-37738. |
12 | Park K S, Ni Z, Cote A P, et al. From the cover: exceptional chemical and thermal stability of zeolitic imidazolate framework[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186-10191. |
13 | Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000. |
14 | 曾新娟, 王丽, 皮丕辉,等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30: 73-86. |
Zeng X J, Wang L, Pi P H, et al. Development and research of special wettability materials for oil/water separation[J]. Progress in Chemistry, 2018, 30: 73-86. | |
15 | Young T. An essay on the cohesion of fluids[J]. Phil. Trans. R. Soc., 1805, 95: 65-87. |
16 | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8): 988-994. |
17 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40(1): 546-551. |
18 | Wang S T, Jiang L. Definition of superhydrophobic states[J]. Adv. Mater., 2007, 19(21): 3423-3424. |
19 | Mehran G, Fugen D, Elena P I, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market[J]. J. Mater. Chem. A, 2019, 7: 16643-16670. |
20 | Darmanin T, Givenchy E T, Amigoni S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Adv. Mater., 2013, 25: 1378-1394. |
21 | Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
22 | Koch K, Bhushan B, Barthlott W. Multifunctional surface structures of plants: an inspiration for biomimetics[J]. Prog. Mater. Sci., 2009, 54(2): 137-178. |
23 | Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7: 5922-5946. |
24 | Shin S, Seo J, Han H, et al. Bio-inspired extreme wetting surfaces for biomedical applications[J]. Materials, 2016, 9(2): 116. |
25 | Tsutomu M. Advanced sol-gel coatings for practical applications[J]. J. Sol-Gel Sci. Technol., 2013, 65: 4-11. |
26 | Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surf. Coat. Technol., 2018, 341(15): 40-56. |
27 | Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. J. Mater. Chem., 2008, 18(6): 621-633. |
28 | Li L X, Li B C, Dong J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. J. Mater. Chem. A, 2016, 4(36): 13677-13725. |
29 | Tian Y, Su B, Jiang L, et al. Interfacial material system exhibiting superwettability[J]. Adv. Mater., 2014, 26: 6872-6897. |
30 | Chu Z L, Feng Y J, Seeger S F. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew. Chem. Int. Ed., 2015, 54(8): 2328-2338. |
31 | 刘光启, 马连湘, 刘杰. 化学化工物性数据手册(有机卷)[M]. 北京: 化学工业出版社, 2001. |
Liu G Q, Ma L X, Liu J. Chemical and Chemical Physical Property Data Book [M]. Beijing: Chemical Industry Press, 2001. | |
32 | Brown P S, Bhushan B. Designing bioinspired superoleophobic surfaces[J]. APL Mater., 2016, 4(1): 015703. |
33 | Milionis A, Bayer I S, Loth E. Recent advances in oil-repellent surfaces[J]. Int. Mater. Rev., 2016, 61(2): 101-126 |
34 | Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323. |
35 | Yang C, Wang X P, Omary M A. Fluorous metal-organic frameworks for high-density gas adsorption[J]. J. Am. Chem. Soc., 2007, 129(50): 15454-15455. |
36 | Yang C, Kaipa U, Zhang Q, et al. Mather fluorous metal organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. J. Am. Chem. Soc., 2011, 133(45): 18094-18097. |
37 | Jiang Z R, Ge J, Zhou Y X, et al. Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water[J]. NPG Asia Mater., 2016, 8: e253. |
38 | Padial N M, Procopio E Q, Montoro C, et al. Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds[J]. Angew. Chem. Int. Ed., 2013, 52: 8290-8294. |
39 | Mukherjee S, Kansara A M, Saha D, et al. An ultrahydrophobic fluorous metal-organic framework derived recyclable composite as a promising platform to tackle marine oil spills[J]. Chem. Eur. J., 2016, 22: 10937-10943. |
40 | Chen T H, Popov I, Zenasni O, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chem. Commun., 2013, 49: 6846-6848. |
41 | Liu C, Huang A S. One-step synthesis of the superhydrophobic zeolitic imidazolate framework F-ZIF-90 for efficient removal of oil[J]. New J. Chem., 2018, 42(4): 2372-2375. |
42 | Moghadam P Z, Ivy J F, Arvapally R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chem. Sci., 2017, 8(5): 3989-4000. |
43 | Noro S I, Nakamura T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers[J]. NPG Asia Mater., 2017, 9(9): e433. |
44 | Wang B, Lv X L, Feng D, et al. Highly stable Zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. J. Am. Chem. Soc., 2016, 138(19): 6204-6216. |
45 | Makal T A, Wang X, Zhou H C. Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups[J]. Cryst. Growth Des., 2013, 13(11): 4760-4768. |
46 | Roy S, Suresh V M, Maji T K, et, al. Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures[J]. Chem. Sci., 2016, 7(3): 2251-2256. |
47 | Zhu N X, Wei Z W, Chen C X, et al. Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities[J]. Angew. Chem. Int. Ed., 2019, 58: 17033-17040. |
48 | Zhang M H, Xin X L, Xiao Z Y, et al. A multi-aromatic hydrocarbon unit induced hydrophobic metal-organic framework for efficient C2/C1 hydrocarbon and oil/water separation[J]. J. Mater. Chem. A, 2017, 5(3): 1168-1175. |
49 | Zhang M H, Guo B B, Feng Y, et al. Amphipathic pentiptycene-based water-resistant Cu-MOF for efficient oil/water separation[J]. Inorg. Chem., 2019, 58(9): 5384-5387. |
50 | Xie L H, Liu X M, He T, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
51 | Nguyen J G, Cohen S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. J. Am. Chem. Soc., 2010, 132(13): 4560-4561. |
52 | Eom S, Kang D W, Kang M J, et al. Fine-tuning of wettability in a single metal-organic framework via post coordination modification and its reduced graphene oxide aerogel for oil-water separation[J]. Chem. Sci., 2019, 10(9): 2663-2669. |
53 | Canivet J, Aguado S, Daniel C, et al. Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J]. ChemCatChem, 2011, 3(4): 675- 678. |
54 | Liu C Y, Liu Q, Huang A S. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols[J]. Chem. Commun., 2016, 52: 3400-3402. |
55 | Zhang H F, Li M, Wang X Z, et al. Fine-tuning metal-organic framework performances by spatially-differentiated postsynthetic modification[J]. J. Mater. Chem. A, 2018, 6: 4260-4265. |
56 | Sun Q, He H M, Gao W Y, et al. Imparting amphiphobicity on single-crystalline porous materials[J]. Nat. Commun., 2016, 7: 13300. |
57 | Zha Q J, Sang X X, Liu D Y, et al. Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption[J]. J. Solid State Chem., 2019, 27: 523-29. |
58 | Yang S L, Peng L, Sun D T, et al. A new post-synthetic polymerization strategy makes metal-organic frameworks more stable[J]. Chem. Sci., 2019, 10(17): 4542-4549. |
59 | Zhang W, Hu Y L, Ge J, et al. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity[J]. J. Am. Chem. Soc., 2014, 136(49): 16978-16981. |
60 | Yim C Y, Jeon S M. Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption[J]. RSC Adv., 2015, 5: 67454-67458. |
61 | Meng W, Feng Z J, Li F, et al. Porous coordination polymer coatings fabricated from Cu3(BTC)2∙3H2O with excellent superhydrophobic and superoleophilic properties[J]. New J. Chem., 2016, 40(12): 10554-10559. |
62 | Kang Z X, Wang S S, Fan L L, et al. Surface wettability switching of metal-organic framework mesh for oil-water separation[J]. Mater. Lett., 2017, 189: 82-85. |
63 | Qian X K, Sun F X, Sun J, et al. Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture[J]. Nanoscale, 2017, 9(5): 2003-2008. |
64 | Wen G, Guo Z G. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution[J]. Colloids Surf. A, 2018, 541: 58-67. |
65 | Du J C, Zhang C Y, Pu H, et al. HKUST-1 MOFs decorated 3D copper foam with superhydrophobicity/superoleophilicity for durable oil/water separation[J]. Colloids Surf. A, 2019, 573: 222-229. |
66 | Su P C, Zhang X, Li Y, et al. Distillation of alcohol/water solution in hybrid metal-organic framework hollow fibers[J]. AIChE J., 2019, 65(9): e16693. |
67 | Yuan S S, Zhu J Y, Li Y, et al. Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface[J]. J. Mater. Chem. A, 2019, 7(6): 2723-2729. |
68 | Jayaramulu K, Datta K K R, Rösler C, et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation[J]. Angew. Chem. Int. Ed., 2016, 55(3): 1178-1182. |
69 | Mullangi D, Shalini S, Nandi S, et al. Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites[J]. J. Mater. Chem. A, 2017, 5(18): 8376-8384. |
70 | Ge Y, Zhou H, Ji Y, et al. Understanding water adsorption and the impact on CO2 capture in chemically stable covalent organic frameworks[J]. J. Phys. Chem. C, 2018, 122(48): 27495-27506. |
71 | Zhao Y, Yao K X, Teng B, et al. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energ. Environ. Sci., 2013, 6(12): 3684-3692. |
72 | Wang G B, Leus K, Jena H S, et al. A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance[J]. J. Mater. Chem. A, 2018, 6(15): 6370-6375. |
73 | Sun Q, Aguila B, Perman J A, et al. Integrating superwettability within covalent organic frameworks for functional coating[J]. Chem, 2018, 4(7): 1726-1739. |
74 | Li X, Zhang C, Cai S, et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks[J]. Nat. Commun., 2018, 9(1): 2998. |
75 | Nandi S, Werner-Zwanziger U, Vaidhyanathan R. A triazine-resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions[J]. J. Mater. Chem. A, 2015, 3: 21116-21122. |
76 | Yan Z J, Ren H, Ma H P, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks[J]. Micropor. Mesopor. Mater., 2013, 173: 92-98. |
77 | Shi Q, Sun H X, Yang R X, et al. Synthesis of conjugated microporous polymers for gas storage and selective adsorption[J]. J. Mater. Sci., 2015, 50: 6388-6394. |
78 | Jiao R, Bao L L, Zhang W L, et al. Synthesis of aminopyridine-containing conjugated microporous polymers with excellent superhydrophobicity for oil/water separation[J]. New J. Chem., 2018, 42(18): 14863-14869. |
79 | Li X, Guo J W, Tong R, et al. Microporous frameworks based on adamantane building blocks: synthesis, porosity, selective adsorption and functional application[J]. React. Funct. Polym., 2018, 130: 126-132. |
80 | Dey D, Banerjee P. Toxic organic solvent adsorption by a hydrophobic covalent polymer[J]. New J. Chem., 2019, 43(9): 3769-3777. |
81 | Dey D, Murmu N C, Banerjee P. Tailor-made synthesis of an melamine-based aminal hydrophobic polymer for selective adsorption of toxic organic pollutants: an initiative towards wastewater purification[J]. RSC Adv., 2019, 9(13): 7469-7478. |
82 | Wang X S, Liu J, Bonefont J M, et al. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup[J]. Chem. Commun., 2013, 49(15): 1533-1535. |
83 | Xiao Z Y, Zhang M H, Fan W D, et al. Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices[J]. Chem. Eng. J., 2017, 326: 640-646. |
84 | Mu P, Sun H X, Zang J K, et al. Facile tunning the morphology and porosity of a superwetting conjugated microporous polymers[J]. React. Funct. Polym., 2016, 106: 105-111. |
85 | Sun Q, Aguila B, Verma G, et al. Superhydrophobicity: constructing homogeneous catalysts into superhydrophobic porous frameworks to protect them from hydrolytic degradation[J]. Chem, 2016, 1(4): 628-639. |
86 | Tang Y Q, Dong K, Wang S, et al. Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework[J]. Mol. Catal., 2019, 474: 110408. |
87 | Luo R C, Chen Y J, He Q, et al. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals[J]. ChemSusChem, 2017, 10(7): 1526-1533. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[6] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[11] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[12] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[13] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[14] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[15] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||