CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5707-5716.DOI: 10.11949/0438-1157.20210707
• Process system engineering • Previous Articles Next Articles
Xiaohui WANG(),Yanjiang WANG,Xiaogang DENG(),Zheng ZHANG
Received:
2021-05-25
Revised:
2021-06-22
Online:
2021-11-12
Published:
2021-11-05
Contact:
Xiaogang DENG
通讯作者:
邓晓刚
作者简介:
王晓慧(1978—),女,博士研究生,基金资助:
CLC Number:
Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description[J]. CIESC Journal, 2021, 72(11): 5707-5716.
王晓慧, 王延江, 邓晓刚, 张政. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716.
Add to citation manager EndNote|Ris|BibTeX
编号 | 故障描述 |
---|---|
IDV4 | 反应器冷却水入口温度发生阶跃变化 |
IDV5 | 冷凝器冷却水入口温度发生阶跃变化 |
IDV10 | C进料温度随机波动 |
IDV11 | 反应器冷却水入口温度随机波动 |
IDV16 | 未知类型故障 |
IDV17 | 未知类型故障 |
IDV19 | 未知类型故障 |
IDV20 | 未知类型故障 |
IDV21 | 物流4的阀门故障 |
Table 1 Faults for algorithm testing
编号 | 故障描述 |
---|---|
IDV4 | 反应器冷却水入口温度发生阶跃变化 |
IDV5 | 冷凝器冷却水入口温度发生阶跃变化 |
IDV10 | C进料温度随机波动 |
IDV11 | 反应器冷却水入口温度随机波动 |
IDV16 | 未知类型故障 |
IDV17 | 未知类型故障 |
IDV19 | 未知类型故障 |
IDV20 | 未知类型故障 |
IDV21 | 物流4的阀门故障 |
No. | FDR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 95.50 | 100.00 | 100.00 | 100.00 |
IDV5 | 37.63 | 100.00 | 100.00 | 100.00 |
IDV10 | 59.38 | 78.63 | 83.13 | 95.25 |
IDV11 | 72.50 | 71.88 | 77.50 | 97.50 |
IDV16 | 46.38 | 82.38 | 86.25 | 98.25 |
IDV17 | 91.75 | 96.75 | 97.25 | 97.75 |
IDV19 | 16.50 | 62.50 | 70.75 | 95.63 |
IDV20 | 62.63 | 72.75 | 77.25 | 92.13 |
IDV21 | 47.50 | 54.88 | 60.63 | 65.75 |
mean | 58.86 | 79.97 | 83.64 | 93.58 |
Table 2 Comparison of fault detection rates
No. | FDR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 95.50 | 100.00 | 100.00 | 100.00 |
IDV5 | 37.63 | 100.00 | 100.00 | 100.00 |
IDV10 | 59.38 | 78.63 | 83.13 | 95.25 |
IDV11 | 72.50 | 71.88 | 77.50 | 97.50 |
IDV16 | 46.38 | 82.38 | 86.25 | 98.25 |
IDV17 | 91.75 | 96.75 | 97.25 | 97.75 |
IDV19 | 16.50 | 62.50 | 70.75 | 95.63 |
IDV20 | 62.63 | 72.75 | 77.25 | 92.13 |
IDV21 | 47.50 | 54.88 | 60.63 | 65.75 |
mean | 58.86 | 79.97 | 83.64 | 93.58 |
No. | FAR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV5 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV10 | 1.88 | 5.63 | 10.00 | 5.63 |
IDV11 | 3.13 | 3.13 | 10.00 | 3.13 |
IDV16 | 28.75 | 16.88 | 23.13 | 18.13 |
IDV17 | 1.25 | 6.88 | 12.5 | 6.88 |
IDV19 | 0.63 | 4.38 | 6.25 | 4.38 |
IDV20 | 0.63 | 1.25 | 3.13 | 1.25 |
IDV21 | 8.13 | 7.50 | 17.50 | 8.13 |
mean | 5.35 | 5.21 | 10.14 | 5.42 |
Table 3 Comparison of false fault alarming rates
No. | FAR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV5 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV10 | 1.88 | 5.63 | 10.00 | 5.63 |
IDV11 | 3.13 | 3.13 | 10.00 | 3.13 |
IDV16 | 28.75 | 16.88 | 23.13 | 18.13 |
IDV17 | 1.25 | 6.88 | 12.5 | 6.88 |
IDV19 | 0.63 | 4.38 | 6.25 | 4.38 |
IDV20 | 0.63 | 1.25 | 3.13 | 1.25 |
IDV21 | 8.13 | 7.50 | 17.50 | 8.13 |
mean | 5.35 | 5.21 | 10.14 | 5.42 |
SWDSVDD | DWDSVDD | |||
---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | |
0.5 | 14.93 | 86.68 | 5.28 | 93.21 |
1 | 12.85 | 85.31 | 5.35 | 93.32 |
2 | 10.14 | 83.64 | 5.42 | 93.58 |
4 | 7.08 | 81.58 | 5.63 | 93.90 |
8 | 5.56 | 80.42 | 6.04 | 94.08 |
16 | 5.21 | 79.97 | 6.39 | 94.13 |
Table 4 Average monitoring results under different tuning factors
SWDSVDD | DWDSVDD | |||
---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | |
0.5 | 14.93 | 86.68 | 5.28 | 93.21 |
1 | 12.85 | 85.31 | 5.35 | 93.32 |
2 | 10.14 | 83.64 | 5.42 | 93.58 |
4 | 7.08 | 81.58 | 5.63 | 93.90 |
8 | 5.56 | 80.42 | 6.04 | 94.08 |
16 | 5.21 | 79.97 | 6.39 | 94.13 |
1 | Booyse W, Wilke D N, Heyns S. Deep digital twins for detection, diagnostics and prognostics[J]. Mechanical Systems and Signal Processing, 2020, 140: 106612. |
2 | 李元, 杨东昇, 赵丽颖, 等. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
Li Y, Yang D S, Zhao L Y, et al. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis[J]. CIESC Journal, 2021, 72(3): 1616-1626. | |
3 | Chen H T, Jiang B, Zhang T Y, et al. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429-437. |
4 | Zhu J L, Ge Z Q, Song Z H, et al. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data[J]. Annual Reviews in Control, 2018, 46: 107-133. |
5 | 徐静, 王振雷, 王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
Xu J, Wang Z L, Wang X. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663. | |
6 | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
Yao Y M, Luo W J, Dai Y Y. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
7 | Wang B, Mao Z Z. A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule[J]. Information Fusion, 2020, 63: 30-40. |
8 | Wang K Z, Lan H B. Robust support vector data description for novelty detection with contaminated data[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103554. |
9 | Zhao Y P, Xie Y L, Ye Z F. A new dynamic radius SVDD for fault detection of aircraft engine[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104177. |
10 | Jiang Q C, Yan X F, Huang B. Deep discriminative representation learning for nonlinear process fault detection[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1410-1419. |
11 | 王建林, 马琳钰, 刘伟旻, 等. 基于核相似度支持向量数据描述的间歇过程监测[J]. 化工学报, 2017, 68(9): 3494-3500. |
Wang J L, Ma L Y, Liu W M, et al. Batch process monitoring by kernel similarity-based support vector data description [J]. CIESC Journal, 2017, 68(9): 3494-3500. | |
12 | 赵小强, 牟淼. 基于变量分块的KDLV-DWSVDD间歇过程故障检测算法研究[J]. 仪器仪表学报, 2021, 42(2): 244-256. |
Zhao X Q, Mou M. Research on fault detection algorithm of batch process based on KDLV-DWSVDD of variable blocks[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 244-256. | |
13 | Zhang Y F, Li X S. Two-step support vector data description for dynamic, non-linear, and non-Gaussian processes monitoring[J]. The Canadian Journal of Chemical Engineering, 2020, 98(10): 2109-2124. |
14 | Yuan P, Mao Z Z, Wang B. A pruned support vector data description-based outlier detection method: applied to robust process monitoring[J]. Transactions of the Institute of Measurement and Control, 2020, 42(11): 2113-2126. |
15 | Liu C Y, Gryllias K. A semi-supervised Support Vector Data Description-based fault detection method for rolling element bearings based on cyclic spectral analysis[J]. Mechanical Systems and Signal Processing, 2020, 140: 106682. |
16 | Lv Z, Yan X F, Jiang Q C, et al. Just-in-time learning-multiple subspace support vector data description used for non-Gaussian dynamic batch process monitoring[J]. Journal of Chemometrics, 2019, 33(6): e3134. |
17 | Haghighi F, Omranpour H. Stacking ensemble model of deep learning and its application to Persian/Arabic handwritten digits recognition[J]. Knowledge-Based Systems, 2021, 220: 106940. |
18 | Wang M, Deng W H. Deep face recognition: a survey[J]. Neurocomputing, 2021, 429: 215-244. |
19 | Garain A, Singh P K, Sarkar R. FuzzyGCP: a deep learning architecture for automatic spoken language identification from speech signals[J]. Expert Systems with Applications, 2021, 168: 114416. |
20 | Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66. |
21 | 谢彦红, 贾冬妮, 张成, 等. 基于邻域保持嵌入-支持向量数据描述的过程监控算法及其应用[J]. 信息与控制, 2020, 49(5): 625-632. |
Xie Y H, Jia D N, Zhang C, et al. Support-vector-data-description process monitoring algorithm based on neighborhood preserving embedding and its application[J]. Information and Control, 2020, 49(5): 625-632. | |
22 | Wang X H, Wang Y J, Deng X G, et al. A batch process monitoring method using two-dimensional localized dynamic support vector data description[J]. IEEE Access, 2020, 8: 181192-181204. |
23 | Ruff L, Vandermeulen R A, Gornitz N, et al. Deep one-class classification [C]//The 35th International Conference on Machine Learning. Stockholm, Sweden, 2018: 4390-4399. |
24 | Ruff L, Vandermeulen RA, Gornitz N, et al. Deep support vector data description for unsupervised and semi-supervised anomaly detection [C]//The ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning. Long Beach, California, USA, 2019: 1-10. |
25 | Odiowei P E P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 36-45. |
26 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
27 | Xue T, Zhong M Y, Luo L J, et al. Distributionally robust fault detection by using kernel density estimation[J]. IFAC-PapersOnLine, 2020, 53(2): 652-657. |
28 | Deng X G, Tian X M, Chen S, et al. Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2526-2540. |
29 | Chen Q, Wang Y Q. Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis[J]. Control Engineering Practice, 2021, 107: 104692. |
30 | Cao J, He Y L, Zhu Q X. An ontology-based procedure knowledge framework for the process industry[J]. The Canadian Journal of Chemical Engineering, 2021, 99(2): 530-542. |
[1] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[10] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[11] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[12] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[13] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[14] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||