CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 512-519.DOI: 10.11949/0438-1157.20201516
• Energy and environmental engineering • Previous Articles Next Articles
LU Pei(),LUO Xianglong(),CHEN Jianyong,YANG Zhi,LIANG Yingzong,CHEN Ying
Received:
2020-10-29
Revised:
2021-01-22
Online:
2021-06-20
Published:
2021-06-20
Contact:
LUO Xianglong
通讯作者:
罗向龙
作者简介:
卢沛(1996—),男,硕士研究生,基金资助:
CLC Number:
LU Pei, LUO Xianglong, CHEN Jianyong, YANG Zhi, LIANG Yingzong, CHEN Ying. Operating characteristics and advanced exergy analysis of plate heat exchangers and their thermal system[J]. CIESC Journal, 2021, 72(S1): 512-519.
卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 板式换热器及其热力系统的运行特性和高级分析[J]. 化工学报, 2021, 72(S1): 512-519.
Add to citation manager EndNote|Ris|BibTeX
参数 | 型号 | 范围 | 误差 |
---|---|---|---|
T | Pt-100(INOR-66RKS) | -200~800℃ | ±0.1℃ |
p | 压力传感器(PTX5072) | 0~3.5 MPa, 0~5 MPa | ±0.2% |
mr | Coriolis流量计(OPTIMASS 1330C) | 0~400 kg/h | ±1.0% |
mv,h | 转子流量计(H250-RR-M40) | 0.400~4 m3/h | ±1.0% |
mv,c | 电磁流量计(AXF025G) | >0.060 m3/h | ±0.2% |
Wexp | 测功仪(DW300KC) | — | ±0.8% |
Wpum | 功率监视器(8967B) | — | ±1.0% |
Qeva | Qeva=f(h1, h6, mr) | — | ±1.3% |
Wnet | Wnet=f(Wexp, Wpum) | — | ±1.0% |
ηth | ηth=f(Qeva, Wexp, Wpum) | — | ±2.2% |
Table 1 Details of measured quantities, calculated quantities and their uncertainties in test rig
参数 | 型号 | 范围 | 误差 |
---|---|---|---|
T | Pt-100(INOR-66RKS) | -200~800℃ | ±0.1℃ |
p | 压力传感器(PTX5072) | 0~3.5 MPa, 0~5 MPa | ±0.2% |
mr | Coriolis流量计(OPTIMASS 1330C) | 0~400 kg/h | ±1.0% |
mv,h | 转子流量计(H250-RR-M40) | 0.400~4 m3/h | ±1.0% |
mv,c | 电磁流量计(AXF025G) | >0.060 m3/h | ±0.2% |
Wexp | 测功仪(DW300KC) | — | ±0.8% |
Wpum | 功率监视器(8967B) | — | ±1.0% |
Qeva | Qeva=f(h1, h6, mr) | — | ±1.3% |
Wnet | Wnet=f(Wexp, Wpum) | — | ±1.0% |
ηth | ηth=f(Qeva, Wexp, Wpum) | — | ±2.2% |
系统部件 | 参数 | 实际循环 | 不可避免损循环 |
---|---|---|---|
工质泵pum | ηpum | — | 0.95 |
管路p-e | ?pp-e | 0.006 MPa | 0.001 MPa |
蒸发器eva | ?Teva | 1.416℃ | 0.5℃ |
管路e-e | ?pe-e | 0.062 MPa | 0.001 MPa |
膨胀机exp | ηexp | 0.63 | 0.95 |
管路e-c | ?pe-c | 0.182 MPa | 0.001 MPa |
冷凝器con | ?Tcon | 0.745℃ | 0.5℃ |
管路c-p | ?pc-p | 0.014 MPa | 0.001 MPa |
Table 2 Real and unavoidable cycles in exergy analysis
系统部件 | 参数 | 实际循环 | 不可避免损循环 |
---|---|---|---|
工质泵pum | ηpum | — | 0.95 |
管路p-e | ?pp-e | 0.006 MPa | 0.001 MPa |
蒸发器eva | ?Teva | 1.416℃ | 0.5℃ |
管路e-e | ?pe-e | 0.062 MPa | 0.001 MPa |
膨胀机exp | ηexp | 0.63 | 0.95 |
管路e-c | ?pe-c | 0.182 MPa | 0.001 MPa |
冷凝器con | ?Tcon | 0.745℃ | 0.5℃ |
管路c-p | ?pc-p | 0.014 MPa | 0.001 MPa |
换热器组合 | 蒸发器 | 冷凝器 | ||
---|---|---|---|---|
εk/% | ?D | εk/% | ?D | |
蒸发器1-冷凝器1 | 66.78 | 3.177 | 39.33 | 1.264 |
蒸发器1-冷凝器2 | 67.24 | 3.083 | 38.17 | 1.224 |
蒸发器1-冷凝器3 | 66.37 | 3.188 | 36.76 | 1.258 |
蒸发器2-冷凝器1 | 66.37 | 3.292 | 38.02 | 1.290 |
蒸发器2-冷凝器2 | 66.03 | 3.276 | 36.90 | 1.257 |
蒸发器2-冷凝器3 | 67.55 | 3.135 | 35.71 | 1.304 |
Table 3 Exergy analysis of different heat exchanger combinations under operating condition when heat source and heat sink are 130℃ and 20℃ respectively
换热器组合 | 蒸发器 | 冷凝器 | ||
---|---|---|---|---|
εk/% | ?D | εk/% | ?D | |
蒸发器1-冷凝器1 | 66.78 | 3.177 | 39.33 | 1.264 |
蒸发器1-冷凝器2 | 67.24 | 3.083 | 38.17 | 1.224 |
蒸发器1-冷凝器3 | 66.37 | 3.188 | 36.76 | 1.258 |
蒸发器2-冷凝器1 | 66.37 | 3.292 | 38.02 | 1.290 |
蒸发器2-冷凝器2 | 66.03 | 3.276 | 36.90 | 1.257 |
蒸发器2-冷凝器3 | 67.55 | 3.135 | 35.71 | 1.304 |
参数 | 工况变化 |
---|---|
有机工质 | R245fa |
热源进口温度/℃ | 120,130,140 |
冷源进口温度/℃ | 15,20,25 |
热源流量/(L/h) | 1800 |
冷源流量/(L/h) | 1350 |
膨胀机转速/(r/min) | 1500 |
工质流量/(kg/s) | 0.14 |
Table 4 Working condition of ORC system
参数 | 工况变化 |
---|---|
有机工质 | R245fa |
热源进口温度/℃ | 120,130,140 |
冷源进口温度/℃ | 15,20,25 |
热源流量/(L/h) | 1800 |
冷源流量/(L/h) | 1350 |
膨胀机转速/(r/min) | 1500 |
工质流量/(kg/s) | 0.14 |
工况组别 | 冷源进口温度/℃ | 热源进口温度/℃ |
---|---|---|
1 | 15 | 120 |
2 | 25 | 120 |
3 | 20 | 130 |
4 | 15 | 140 |
5 | 25 | 140 |
Table 5 Experimental operating condition group of ORC system
工况组别 | 冷源进口温度/℃ | 热源进口温度/℃ |
---|---|---|
1 | 15 | 120 |
2 | 25 | 120 |
3 | 20 | 130 |
4 | 15 | 140 |
5 | 25 | 140 |
工况组别 | 部件 | 效率/ % | 损/ kW | ηth/% | 系统 效率/% | |
---|---|---|---|---|---|---|
实际 | 不可避免 | |||||
1 | 蒸发器 | 63.99 | 3.029 | 4.43 | 12.65 | 19.22 |
冷凝器 | 5.37 | 1.186 | ||||
工质泵 | 20.78 | 0.371 | ||||
膨胀机 | 65.59 | 0.896 | ||||
2 | 蒸发器 | 67.95 | 2.614 | 4.55 | 11.20 | 19.15 |
冷凝器 | 55.95 | 0.850 | ||||
工质泵 | 20.17 | 0.378 | ||||
膨胀机 | 65.82 | 0.858 | ||||
3 | 蒸发器 | 66.03 | 3.276 | 4.54 | 13.02 | 18.60 |
冷凝器 | 36.90 | 1.257 | ||||
工质泵 | 22.62 | 0.376 | ||||
膨胀机 | 65.60 | 0.988 | ||||
4 | 蒸发器 | 62.94 | 4.143 | 4.54 | 14.87 | 17.97 |
冷凝器 | 14.22 | 1.710 | ||||
工质泵 | 23.47 | 0.377 | ||||
膨胀机 | 67.16 | 1.026 | ||||
5 | 蒸发器 | 65.24 | 3.696 | 4.77 | 13.24 | 17.77 |
冷凝器 | 53.06 | 1.274 | ||||
工质泵 | 22.15 | 0.388 | ||||
膨胀机 | 68.51 | 0.909 |
Table 6 Results of traditional exergy analysis
工况组别 | 部件 | 效率/ % | 损/ kW | ηth/% | 系统 效率/% | |
---|---|---|---|---|---|---|
实际 | 不可避免 | |||||
1 | 蒸发器 | 63.99 | 3.029 | 4.43 | 12.65 | 19.22 |
冷凝器 | 5.37 | 1.186 | ||||
工质泵 | 20.78 | 0.371 | ||||
膨胀机 | 65.59 | 0.896 | ||||
2 | 蒸发器 | 67.95 | 2.614 | 4.55 | 11.20 | 19.15 |
冷凝器 | 55.95 | 0.850 | ||||
工质泵 | 20.17 | 0.378 | ||||
膨胀机 | 65.82 | 0.858 | ||||
3 | 蒸发器 | 66.03 | 3.276 | 4.54 | 13.02 | 18.60 |
冷凝器 | 36.90 | 1.257 | ||||
工质泵 | 22.62 | 0.376 | ||||
膨胀机 | 65.60 | 0.988 | ||||
4 | 蒸发器 | 62.94 | 4.143 | 4.54 | 14.87 | 17.97 |
冷凝器 | 14.22 | 1.710 | ||||
工质泵 | 23.47 | 0.377 | ||||
膨胀机 | 67.16 | 1.026 | ||||
5 | 蒸发器 | 65.24 | 3.696 | 4.77 | 13.24 | 17.77 |
冷凝器 | 53.06 | 1.274 | ||||
工质泵 | 22.15 | 0.388 | ||||
膨胀机 | 68.51 | 0.909 |
1 | 陈雷. 化工设备换热器常见问题及处理措施[J]. 化工管理, 2019, (4): 139. |
Chen L. Common problems and treatment measures of heat exchangers for chemical equipment [J]. Chemical Enterprise Management, 2019, (4): 139. | |
2 | Lecompte S, Huisseune H, van den Broek M, et al. Part load based thermo-economic optimization of the organic Rankine cycle (ORC) applied to a combined heat and power (CHP) system [J]. Applied Energy, 2013, 111: 871-881. |
3 | 杨汉强, 张晓冬, 赵宗昌. TFE/NMP吸收式制冷机的分析[J]. 化工学报, 2002, 53(4): 384-389. |
Yang H Q, Zhang X D, Zhao Z C. Exergy analysis of TFE/NMP absorption refrigerator [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(4): 384-389. | |
4 | 熊永强, 华贲. 利用液化天然气冷能捕集CO2的动力系统的集成[J]. 化工学报, 2010, 61(12): 3142-3148. |
Xiong Y Q, Hua B. Integration of energy power system in CO2 capture by utilization of cold energy from liquefied natural gas [J]. CIESC Journal, 2010, 61(12): 3142-3148. | |
5 | Li J, Duan Y Y, Yang Z, et al. Exergy analysis of novel dual-pressure evaporation organic Rankine cycle using zeotropic mixtures [J]. Energy Conversion and Management, 2019, 195: 760-769. |
6 | Chen J Y, Zhu K D, Luo X L, et al. Application of liquid-separation condensation to plate heat exchanger: comparative studies [J]. Applied Thermal Engineering, 2019, 157: 113739. |
7 | Devecioğlu A G, Oruç V. Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a [J]. Energy, 2018, 155: 105-116. |
8 | Mancini R, Zühlsdorf B, Aute V, et al. Performance of heat pumps using pure and mixed refrigerants with maldistribution effects in plate heat exchanger evaporators [J]. International Journal of Refrigeration, 2019, 104: 390-403. |
9 | 荣杨一鸣, 吴巧仙, 周霞, 等. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
Rong-Yang Y M, Wu Q. X, Zhou X,et al. Research on performance optimization of air compression heat self-utilization in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. | |
10 | Pandey S D, Nema V K. An experimental investigation of exergy loss reduction in corrugated plate heat exchanger [J]. Energy, 2011, 36(5): 2997-3001. |
11 | 郭春生, 程林, 杜文静. 不同波纹比例新型板式换热器的传热阻力特性及分析[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 163-167. |
Guo C S, Cheng L, Du W J. Heat transfer and resistance characteristics and exergy analysis of new-type plate heat exchanges with different corrugation ratios [J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2): 163-167. | |
12 | Chen Q C, Xu J L, Chen H X. A new design method for organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source [J]. Applied Energy, 2012, 98: 562-573. |
13 | 张慧. 板式换热器传递特性研究[J]. 应用能源技术, 2014, (11): 34-37. |
Zhang H. A research on the exergy transfer characteristics of the plate heat exchanger [J]. Applied Energy Technology, 2014, (11): 34-37. | |
14 | Doohan R S, Kush P K, Maheshwari G. Exergy based optimization and experimental evaluation of plate fin heat exchanger [J]. Applied Thermal Engineering, 2016, 102: 80-90. |
15 | 王茜, 韩怀志, 李炳熙. 板式换热器波纹通道的流动与传热机理[J]. 化工学报, 2017, 68: 71-82. |
Wang Q, Han H Z, Li B X. Flow and heat transfer mechanism of corrugated plate heat exchanger [J]. CIESC Journal, 2017, 68: 71-82. | |
16 | 裴刚, 王东玥, 李晶, 等. 有机朗肯循环热电联供系统的试验研究[J]. 化工学报, 2013, 64(6): 1993-2000. |
Pei G, Wang D Y, Li J, et al. Organic Rankine cycle combined heat and power system [J]. CIESC Journal, 2013, 64(6): 1993-2000. | |
17 | 王菲, 沈胜强. 新型太阳能双喷射制冷系统的可用能效率分析[J]. 化工学报, 2009, 60(3): 553-559. |
Wang F, Shen S Q. Exergy analysis of novel solar bi-ejector refrigeration system [J]. CIESC Journal, 2009, 60(3): 553-559. | |
18 | Chen J Y, Zheng X S, Guo G Q, et al. A flexible and multi-functional organic Rankine cycle system: preliminary experimental study and advanced exergy analysis [J]. Energy Conversion and Management, 2019, 187: 339-355. |
19 | Morosuk T, Tsatsaronis G. Advanced exergetic evaluation of refrigeration machines using different working fluids [J]. Energy, 2009, 34(12): 2248-2258. |
20 | Chen J Y, Havtun H, Palm B. Conventional and advanced exergy analysis of an ejector refrigeration system [J]. Applied Energy, 2015, 144: 139-151. |
21 | Galindo J, Ruiz S, Dolz V, et al. Advanced exergy analysis for a bottoming organic Rankine cycle coupled to an internal combustion engine [J]. Energy Conversion and Management, 2016, 126: 217-227. |
22 | 陈玉婷, 徐燕燕, 王磊, 等. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733. |
Chen Y T, Xu Y Y, Wang L, et al. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733. | |
23 | 郑晓生, 罗俊伟, 卢沛, 等. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统试验研究[J]. 广东工业大学学报, 2020, 37(3): 114-120. |
Zheng X S, Luo J W, Lu P, et al. An experimental study of zeotropic-mixture organic Rankine cycle system utilizing R1234ze(E)/R245fa [J]. Journal of Guangdong University of Technology, 2020, 37(3): 114-120. | |
24 | 陈超男, 罗向龙, 杨智, 等. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
Chen C N, Luo X L, Yang Z, et al. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[3] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[4] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[5] | LIANG Kunfeng, FENG Changzhen, WANG Moran, DONG Bin, WANG Lin, LIU Ruijian. Advanced exergy analysis of heat pump performance affected by heat transfer matching characteristics of non-azeotropic refrigerants [J]. CIESC Journal, 2021, 72(4): 2038-2046. |
[6] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[7] | Chaonan CHEN, Xianglong LUO, Zhi YANG, Renlong HUANG, Pei LU, Jianyong CHEN, Ying CHEN. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381. |
[8] | Yong MING, Yannan PENG, Wen SU, Guolong WEI, Qiang WANG, Naijun ZHOU, Li ZHAO. Thermodynamic performance comparison of ORC between mixtures and pure fluids under closed heat source [J]. CIESC Journal, 2020, 71(4): 1570-1579. |
[9] | Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network [J]. CIESC Journal, 2019, 70(9): 3256-3266. |
[10] | Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290. |
[11] | Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733. |
[12] | Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541. |
[13] | LIU Yang, HAN Jitian, YOU Huailiang. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller [J]. CIESC Journal, 2018, 69(S2): 341-349. |
[14] | YOU Huailiang, HAN Jitian, LIU Yang. Thermodynamic analysis of micro tri-generation system based on SOFC/MGT/ORC [J]. CIESC Journal, 2018, 69(S2): 300-308. |
[15] | PAN Quanwen, WANG Ruzhu. Analysis on performance of thermally driven cooling and power cogeneration system with dual working mode [J]. CIESC Journal, 2018, 69(S2): 373-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||