CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1570-1579.DOI: 10.11949/0438-1157.20190882
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yong MING1(),Yannan PENG1,Wen SU1(),Guolong WEI1,Qiang WANG1,Naijun ZHOU1,Li ZHAO2
Received:
2019-08-05
Revised:
2019-10-24
Online:
2020-04-05
Published:
2020-04-05
Contact:
Wen SU
明勇1(),彭艳楠1,苏文1(),魏国龙1,王强1,周乃君1,赵力2
通讯作者:
苏文
作者简介:
明勇(1984—),男,博士研究生,基金资助:
CLC Number:
Yong MING, Yannan PENG, Wen SU, Guolong WEI, Qiang WANG, Naijun ZHOU, Li ZHAO. Thermodynamic performance comparison of ORC between mixtures and pure fluids under closed heat source[J]. CIESC Journal, 2020, 71(4): 1570-1579.
明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579.
Add to citation manager EndNote|Ris|BibTeX
系统稳定参数 | 值 |
---|---|
加压水进口温度/K | 413.15 |
加压水出口温度/K | 353.15 |
供热量/kW | 300, 350, 400 |
蒸发过热度范围/K | 0~15 |
冷凝过冷度/K | 0 |
系统压力范围/MPa | 0.1~2.5 |
冷却水进口温度/K | 293.15 |
冷却水流量范围/(kg/s) | 4~12 |
蒸发器窄点温差/K | 15 |
冷凝器窄点温差/K | 10 |
回热器窄点温差/K | 10 |
工质泵等熵效率 | 60 |
膨胀机等熵效率 | 75 |
Table 1 Cycle conditions for closed heat source
系统稳定参数 | 值 |
---|---|
加压水进口温度/K | 413.15 |
加压水出口温度/K | 353.15 |
供热量/kW | 300, 350, 400 |
蒸发过热度范围/K | 0~15 |
冷凝过冷度/K | 0 |
系统压力范围/MPa | 0.1~2.5 |
冷却水进口温度/K | 293.15 |
冷却水流量范围/(kg/s) | 4~12 |
蒸发器窄点温差/K | 15 |
冷凝器窄点温差/K | 10 |
回热器窄点温差/K | 10 |
工质泵等熵效率 | 60 |
膨胀机等熵效率 | 75 |
1 | Su W, Zhao L, Deng S. Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method[J]. Energy Conversion and Management, 2017, 132: 307-315. |
2 | 吴玉庭, 赵英昆, 雷标, 等. 冷却水流量对ORC系统性能影响的实验研究[J]. 化工学报, 2018, 69(6): 2639-2645. |
Wu Y T, Zhao Y K, Lei B, et al. Effect of cooling water flow rate on power generation of organic Rankine cycle system[J]. CIESC Journal, 2018, 69(6): 2639-2645. | |
3 | 张红光, 杨宇鑫, 孟凡骁, 等. 有机朗肯循环系统中工质泵的运行性能[J]. 化工学报2017, 68(9): 3573-3579. |
Zhang H G, Yang Y X, Meng F X, et al. Running performance of working fluid pump for organic Rankine cycle system[J]. CIESC Journal, 2017, 68(9): 3573-3579. | |
4 | Lecompte S, Gusev S, Vanslambrouck B, et al. Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation[J]. Applied Energy, 2018, 226: 82-106. |
5 | Saleh B, Gerald K, Martin W, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32(7): 1210-1221. |
6 | Yang L X, Gong M Q, Guo H, et al. Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles[J]. Energy, 2016, 109: 830-844. |
7 | Su W, Zhao L, Deng S. Simultaneous working fluids design and cycle optimization for organic Rankine cycle using group contribution model[J]. Applied Energy, 2017, 202: 618-627. |
8 | Vivian J, Giovanni M, Andrea L. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources[J]. Applied Energy, 2015, 156: 727-746. |
9 | 王羽平, 丁小益, 翁一武. 用于ORC发电系统的混合工质R601a/R600a的实验研究[J]. 中国电机工程学报, 2016, 36(12): 3184-3191. |
Wang Y P, Ding X Y, Weng Y W. Experimental study of mixture R601a/R600a used in ORC power generation system[J]. Proceedings of the CSEE, 2016, 36(12): 3184-3191. | |
10 | 倪渊. 二元非共沸混合工质低温余热发电ORC系统优化研究[D]. 重庆: 重庆大学, 2013. |
Ni Y. Recovery of low-temperature waste heat by optimization of Organic Rankine Cycle system with binary non-azeotropic mixtures[D]. Chongqing: Chongqing University, 2013. | |
11 | Györke G, Deiters U K, Groniewsky A, et al. Novel classification of pure working fluids for Organic Rankine Cycle[J]. Energy, 2018, 145: 288-300. |
12 | Landelle A, Tauveron N, Haberschill P, et al. Organic Rankine cycle design and performance comparison based on experimental database[J]. Applied Energy, 2017, 204: 1172-1187. |
13 | 麻建超, 刘玉兰, 陈九法. 混合工质与纯工质在有机朗肯循环系统中输出功及效率的分析对比[J]. 发电设备, 2017, 3: 145-149. |
Ma J C, Liu Y L, Chen J F. Comparative analysis on power output and exergy efficiency of mixed and pure refrigerant in an ORC system [J]. Power Equipment, 2017, 3: 145-149. | |
14 | 莫依璃. 工业余热发电二元非共沸混合工质ORC系统研究[D]. 重庆: 重庆大学, 2014. |
Mo Y L. Study on industrial waste heat generation by Organic Rankine Cycle using binary non-azeotropic mixtures[D]. Chongqing: Chongqing University, 2014. | |
15 | Liu Q, Shen A J, Duan Y Y. Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids[J]. Applied Energy, 2015, 148: 410-420. |
16 | Wang X D, Zhao L. Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation[J]. Solar Energy, 2009, 83(5): 605-613. |
17 | Li W, Feng X, Yu L J, et al. Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31(17): 4014-4023. |
18 | Li Y R, Du M T, Wu C M, et al. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery[J]. Energy, 2014, 77: 509-519. |
19 | Su W, Hwang Y, Deng S, et al. Thermodynamic performance comparison of Organic Rankine Cycle between zeotropic mixtures and pure fluids under open heat source[J]. Energy Conversion and Management, 2018, 165: 720-737. |
20 | Aboelwafa O, Fateen S K, Soliman A, et al. A review on solar Rankine cycles: working fluids, applications, and cycle modifications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 868-885. |
21 | Xu W, Deng S, Su W, et al. How to approach Carnot cycle via zeotropic working fluid: research methodology and case study[J]. Energy, 2018, 144: 576-586. |
22 | Bao J, Zhao L, Zhang W. A novel auto-cascade low-temperature solar Rankine cycle system for power generation[J]. Solar Energy, 2011, 85(11): 2710-2719. |
23 | 柴俊霖, 田瑞, 杨富斌, 等. 车用柴油机余热回收有机朗肯循环系统方案热经济性对比分析[J]. 化工学报, 2017, 68(8): 3258-3265. |
Chai J L, Tian R, Yang F B, et al. Thermo-economic comparative analysis of different organic Rankine cycle system schemes for vehicle diesel engine waste heat recovery[J]. CIESC Journal, 2017, 68(8): 3258-3265. | |
24 | 黄仁龙, 罗向龙, 梁志辉, 等. 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5):2040-2048. |
Huang R L, Luo X L, Liang Z H, et al. Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation [J]. CIESC Journal, 2018, 69(5) :2040-2048. | |
25 | Zhang J Y, Zhao L, Wen J, et al. An overview of 200 kW solar power plant based on organic Rankine cycle[J]. Energy Procedia, 2016, 88: 356-362. |
26 | Noriega S, Gosselin L, Alexandre K. Designed binary mixtures for subcritical organic Rankine cycles based on multiobjective optimization[J]. Energy Conversion Management, 2018, 156: 585-596. |
27 | Wang D, Ma Y, Tian R, et al. Thermodynamic evaluation of an ORC system with a low pressure saturated steam heat source[J]. Energy, 2018, 149: 375-385. |
28 | Park B S, Usman M, Imran M, et al. Review of Organic Rankine Cycle experimental data trends[J]. Energy Conversion Management, 2018, 173: 679-691. |
29 | Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.0 [R]. USA: National Institute of Standards and Technology (NIST), 2010. |
30 | Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004[J]. Journal of Chemical and Engineering Data, 2012, 57(11): 3032-3091. |
31 | Brown J, Brignoli R, Daubman S. Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles[J]. Energy, 2014, 73: 818-828. |
32 | Chys M, van den Broek M, Vanslambrouck B, et al. Potential of zeotropic mixtures as working fluids in organic Rankine cycles [J]. Energy, 2012, 44: 623-632. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[3] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[4] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[5] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[6] | Guidong HUANG, Songyuan ZHANG, Zhong GE, Zhiyong XIE, Huajiang XIANG, Yinlian YAN, Zhipeng YUAN. Thermal performance study of organic flash cycle based on internal heat exchanger [J]. CIESC Journal, 2020, 71(7): 3080-3090. |
[7] | Chaonan CHEN, Xianglong LUO, Zhi YANG, Renlong HUANG, Pei LU, Jianyong CHEN, Ying CHEN. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381. |
[8] | Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network [J]. CIESC Journal, 2019, 70(9): 3256-3266. |
[9] | Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290. |
[10] | Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733. |
[11] | Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541. |
[12] | YOU Huailiang, HAN Jitian, LIU Yang. Thermodynamic analysis of micro tri-generation system based on SOFC/MGT/ORC [J]. CIESC Journal, 2018, 69(S2): 300-308. |
[13] | PAN Quanwen, WANG Ruzhu. Analysis on performance of thermally driven cooling and power cogeneration system with dual working mode [J]. CIESC Journal, 2018, 69(S2): 373-378. |
[14] | HE Suyan, SHAO Chao, YANG Yutao, WANG Chao, ZHAO Youxin. Theoretical simulation and experimental study on effect of mixture ratio in auto-cascade refrigeration cycle [J]. CIESC Journal, 2018, 69(S1): 108-114. |
[15] | WU Yuting, ZHAO Yingkun, LEI Biao, MENG Qingpeng, CHEN Rumeng, ZHI Ruiping, MA Chongfang. Effect of cooling water flow rate on power generation of organic Rankine cycle system [J]. CIESC Journal, 2018, 69(6): 2639-2645. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||