CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 530-538.DOI: 10.11949/0438-1157.20200997
• Material science and engineering, nanotechnology • Previous Articles Next Articles
HAN Wei(),ZHAN Jun,SHI Hong,ZHAO Dong,CAI Shaojun,PENG Xianghong(),XIAO Biao,GAO Yu
Received:
2020-07-23
Revised:
2020-09-18
Online:
2021-06-20
Published:
2021-06-20
Contact:
PENG Xianghong
通讯作者:
彭湘红
作者简介:
韩威(1998—),男,硕士研究生,基金资助:
CLC Number:
HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots[J]. CIESC Journal, 2021, 72(S1): 530-538.
韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538.
Add to citation manager EndNote|Ris|BibTeX
M/% | QY/% |
---|---|
0 | 4.9 |
2.5 | 6.12 |
5.0 | 9.23 |
7.5 | 7.25 |
15.0 | 5.99 |
25.0 | 5.1 |
Table 1 Effect of the mass ratio of the soybean protein to citrate urea (M) on fluorescence quantum yield(QY) of N, S-GQDs
M/% | QY/% |
---|---|
0 | 4.9 |
2.5 | 6.12 |
5.0 | 9.23 |
7.5 | 7.25 |
15.0 | 5.99 |
25.0 | 5.1 |
Fig.5 UV-vis absorption spectran(a); Fluorescence excitation (λEX = 330 nm) and emission spectra (λEM = 419 nm) of the N, S-GQDs dispersed in water at room temperature (inset: photographs under daylight and UV radiation)(b); Fluorescence emission spectra of the N, S-GQDs obtained at different excitation wavelengths (c); Time-resolved PL decay and ?tting curves for the as-prepared NCQDs(d)
Fig.6 Fluorescence response of N, S-GQDs by metal ions: Fluorescence quenching induced by different metal ions in a concentration of 1.0 mmol/L (a); Fluorescence spectra of N, S-GQDs at various concentrations of Fe3+ (λEx = 330 nm) (b); Linear relationship between fluorescence and Fe3+ concentration at 0—1.0 mmol/L(c)
1 | 张亚婷, 张博超, 张建兰, 等. “自下而上”化学合成纳米石墨烯的研究进展[J]. 化工学报, 2020, 71(6): 2628-2642. |
Zhang Y T, Zhang B C, Zhang J L, et al. Research progress in “bottom-up” chemical synthesis of nanographenes[J]. CIESC Journal, 2020, 71(6): 2628-2642. | |
2 | Wang G, Guo Q, Chen D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5750-5759. |
3 | 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315. |
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315. | |
4 | Yan Y B, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials, 2019, 31(21): 1808283. |
5 | Liu W W, Zhang M W, Li M, et al. Advanced electrode materials comprising of structure-engineered quantum dots for high-performance asymmol/letric micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(8): 1903724. |
6 | Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245. |
7 | Zhang Y T, Li K K, Ren S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(Ⅱ) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9793-9799. |
8 | Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738. |
9 | Bhattacharyya S, Ehrat F, Urban P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots[J]. Nature Communications, 2017, 8(1): 1401. |
10 | Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing[J]. ACS Nano, 2017, 11(2): 1432-1442. |
11 | Meng W X, Bai X, Wang B Y, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192. |
12 | Liu M L, Chen B B, Li C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chemistry, 2019, 21(3): 449-471. |
13 | Chung S, Revia R A, Zhang M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2019: 1904362. |
14 | 陈云, 王念贵. 大豆蛋白质科学与材料[M]. 北京: 化学工业出版社, 2014: 10. |
Chen Y, Wang N G. Soybean Protein Science and Materials[M]. Beijing: Chemical Industry Press, 2014: 10. | |
15 | Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society, 2012, 134(1): 15-18. |
16 | Zhu S J, Meng Q N, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14): 3953-3957. |
17 | Zhan J, Peng R, Wei S, et al. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan[J]. ACS Omega, 2019, 4(27): 22574-22580. |
18 | 王艳洁, 那广水, 王震, 等. 检出限的涵义和计算方法[J]. 化学分析计量, 2012, 21(5): 85-88. |
Wang Y J, Na G S, Wang Z, et al. Connotation and calculation methods of detection limit[J]. Chemical Analysis and Meterage, 2012, 21(5): 85-88. | |
19 | Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24): 12272-12277. |
20 | Ye R Q, Xiang C S, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4: 2943. |
21 | Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780. |
22 | Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4): 744-745. |
23 | Biscarat J, Bechelany M, Pochat-Bohatier C, et al. Graphene-like BN/gelatin nanobiocomposites for gas barrier applications[J]. Nanoscale, 2015, 7(2): 613-618. |
24 | Wang D, Wang L, Dong X Y, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection[J]. Carbon, 2012, 50(6): 2147-2154. |
25 | Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48(3): 380-382. |
26 | Liang Z C, Zeng L, Cao X D, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. J. Mater. Chem. C, 2014, 2(45): 9760-9766. |
27 | Zhao S, Lan M, Zhu X, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17054-17060. |
28 | Liu X L, Jiang H, Ye J, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging[J]. Advanced Functional Materials, 2016, 26(47): 8694-8706. |
29 | Wang Y F, Dong L H, Xiong R L, et al. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMOL/LA core–shell nanoparticles[J]. Journal of Materials Chemistry C, 2013, 1(46): 7731. |
30 | Wang W L, Wang Z F, Liu J J, et al. One-pot facile synthesis of graphene quantum dots from rice husks for Fe3+ sensing[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9144-9150. |
31 | Li S, Li Y, Cao J, et al. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+[J]. Analytical Chemistry, 2014, 86(20): 10201-10207. |
32 | Ananthanarayanan A, Wang X W, Routh P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing[J]. Advanced Functional Materials, 2014, 24(20): 3021-3026. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[8] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[9] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[10] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[11] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[12] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[13] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[14] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[15] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||