CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5481-5501.DOI: 10.11949/0438-1157.20210850
• Reviews and monographs • Previous Articles Next Articles
Wanpeng ZHENG(),Xiaoyong GAO(),Guiyao ZHU,Xin ZUO
Received:
2021-06-24
Revised:
2021-07-22
Online:
2021-11-12
Published:
2021-11-05
Contact:
Xiaoyong GAO
通讯作者:
高小永
作者简介:
郑万鹏(1995—),男,博士研究生,基金资助:
CLC Number:
Wanpeng ZHENG, Xiaoyong GAO, Guiyao ZHU, Xin ZUO. Research progress on crude oil operation optimization[J]. CIESC Journal, 2021, 72(11): 5481-5501.
郑万鹏, 高小永, 朱桂瑶, 左信. 原油作业过程优化的研究进展[J]. 化工学报, 2021, 72(11): 5481-5501.
Add to citation manager EndNote|Ris|BibTeX
建模方法 | 研究创新点 | 优缺点 |
---|---|---|
DMA[ | 克服此前预测模型不允许时变的局限性 | 克服此前部分预测模型的应用局限性,预测性能的部分回归评价指标优于经典预测模型,但模型精度不够理想,计算较为复杂 |
EMD[ | 解决原油价格预测的时滞问题 | |
GEP[ | 提升原油价格预测的RMSE与MAE预测性能 | |
MSM,GARCH[ | 提升包含损失函数的原油风险价值预测的准确性 | |
TVP[ | 提升原油价格预测的MSPE和方向精度的预测性能 | |
Huber[ | 引入正则化约束避免预测的过拟合问题 | |
Bayes[ | 考虑影响石油价格的独立变量因素 | 预测结果可长期保持稳定,但模型精度不够理想,计算时间长 |
AR,ARMA[ | 研究样本外的预测性能和多模型组合的预测性能 | |
GASVM,GABP[ | 结合遗传算法与人工智能并考虑了长期价格影响因素 | |
MMGARCH[ | 考虑原油价格波动率的结构变化和长记忆性特征 | |
FC-MACRO,FC-TECH,FC-ALL[ | 研究宏观经济指标下的双变量模型预测问题 | 预测性能的部分回归评价指标优于单一模型,但组合模型的结构十分复杂,计算过程长且计算难度高 |
LR,ANN,SVR[ | 研究多粒度异构组合方法在原油价格预测的应用 |
Table 1 Modeling method of crude oil price prediction model
建模方法 | 研究创新点 | 优缺点 |
---|---|---|
DMA[ | 克服此前预测模型不允许时变的局限性 | 克服此前部分预测模型的应用局限性,预测性能的部分回归评价指标优于经典预测模型,但模型精度不够理想,计算较为复杂 |
EMD[ | 解决原油价格预测的时滞问题 | |
GEP[ | 提升原油价格预测的RMSE与MAE预测性能 | |
MSM,GARCH[ | 提升包含损失函数的原油风险价值预测的准确性 | |
TVP[ | 提升原油价格预测的MSPE和方向精度的预测性能 | |
Huber[ | 引入正则化约束避免预测的过拟合问题 | |
Bayes[ | 考虑影响石油价格的独立变量因素 | 预测结果可长期保持稳定,但模型精度不够理想,计算时间长 |
AR,ARMA[ | 研究样本外的预测性能和多模型组合的预测性能 | |
GASVM,GABP[ | 结合遗传算法与人工智能并考虑了长期价格影响因素 | |
MMGARCH[ | 考虑原油价格波动率的结构变化和长记忆性特征 | |
FC-MACRO,FC-TECH,FC-ALL[ | 研究宏观经济指标下的双变量模型预测问题 | 预测性能的部分回归评价指标优于单一模型,但组合模型的结构十分复杂,计算过程长且计算难度高 |
LR,ANN,SVR[ | 研究多粒度异构组合方法在原油价格预测的应用 |
文献 | 优化模型 | 优化算法 | 算法创新点 | 算法设计思路与优缺点 |
---|---|---|---|---|
[ | MILP模型 | 分枝定界法 | 引入分枝定界的优先队列方法和特殊 有序集方法 | 算法的主要思想在于缩小解的搜索空间,具有算法结构简单的优点,但计算速度慢,对于模型规模存在严格限制,无法求解具有大规模变量的优化模型 |
[ | MILP模型 | 分枝定界法 | 引入局部分枝割的不等式方法 | |
[ | MINLP模型 | 迭代算法 | 高维决策变量迭代分解为低维变量 | 算法的主要思想在于通过迭代以降低模型决策变量维数及约束条件线性化,具有适用范围广、非线性系统拟合能力强的优点,但求解时间会随迭代次数增加而快速增加,且优化结果性能一般 |
[ | MINLP模型 | 迭代算法 | 提出两阶段的MILP-NLP迭代方法 | |
[ | MILP模型 | 迭代算法 | 提出基于组合时间槽的迭代方法 | |
[ | MINLP模型 | 迭代算法 | 非线性约束迭代转化为线性约束 | |
[ | MINLP模型 | 迭代算法 | 提出带域约简的MILP-NLP迭代算法 | |
[ | MINLP模型 | 松弛算法 | 引入线性可加性指数与局部松弛策略 | 算法主要思想在于求出解的下界以缩小解空间,适用于组合优化问题,但优化结果性能较差,且在一些情况下无法得到可行解 |
[ | MINLP模型 | 群搜索算法 | 提出置换变异、反转变异和插入变异三组 变异策略 | 算法主要思想在于使游荡者跳出局部最优,其全局搜索的质量和效率都较好,但算法结构复杂,优化性能和收敛速度一般,局部搜索能力差 |
[ | MILP模型 | 滚动时域策略 | 在线进行且沿时间轴反复滚动优化 | 算法主要思想在于转化解的时域,在较小且重叠的时域范围内求解,具有计算速度快、计算结果精度高的优点,但算法结构通常较为复杂,应用局限性大 |
[ | MILP模型 | 滚动时域策略 | 在简单分解的基础上添加辅助时间片段 和安全保障约束 | |
[ | MINLP模型 | 遗传算法 | 提出NSGA-Ⅱ算法并使用一条染色体来 编码可行的时间表 | 算法主要思想在于以决策变量的编码作为运算对象,直接以目标函数值作为搜索信息,具有计算简单,全局搜索性好的优点,但算法的计算效率低,易过早收敛,且需对不可行解采用阈值 |
[ | MINLP模型 | 遗传算法 | 利用加权函数将多目标问题转化为单 目标问题 | |
[ | MINLP模型 | 遗传算法 | 提出NSGA-Ⅲ算法并将多目标优化问题 转换为离散的动态资源分配问题 | |
[ | MINLP模型 | 遗传算法 | 提出SAGA算法并使得GA染色体使用 基于图的表示形式 |
Table 2 Model and algorithm methods of crude oil storage and transportation optimization based on mathematical programming model
文献 | 优化模型 | 优化算法 | 算法创新点 | 算法设计思路与优缺点 |
---|---|---|---|---|
[ | MILP模型 | 分枝定界法 | 引入分枝定界的优先队列方法和特殊 有序集方法 | 算法的主要思想在于缩小解的搜索空间,具有算法结构简单的优点,但计算速度慢,对于模型规模存在严格限制,无法求解具有大规模变量的优化模型 |
[ | MILP模型 | 分枝定界法 | 引入局部分枝割的不等式方法 | |
[ | MINLP模型 | 迭代算法 | 高维决策变量迭代分解为低维变量 | 算法的主要思想在于通过迭代以降低模型决策变量维数及约束条件线性化,具有适用范围广、非线性系统拟合能力强的优点,但求解时间会随迭代次数增加而快速增加,且优化结果性能一般 |
[ | MINLP模型 | 迭代算法 | 提出两阶段的MILP-NLP迭代方法 | |
[ | MILP模型 | 迭代算法 | 提出基于组合时间槽的迭代方法 | |
[ | MINLP模型 | 迭代算法 | 非线性约束迭代转化为线性约束 | |
[ | MINLP模型 | 迭代算法 | 提出带域约简的MILP-NLP迭代算法 | |
[ | MINLP模型 | 松弛算法 | 引入线性可加性指数与局部松弛策略 | 算法主要思想在于求出解的下界以缩小解空间,适用于组合优化问题,但优化结果性能较差,且在一些情况下无法得到可行解 |
[ | MINLP模型 | 群搜索算法 | 提出置换变异、反转变异和插入变异三组 变异策略 | 算法主要思想在于使游荡者跳出局部最优,其全局搜索的质量和效率都较好,但算法结构复杂,优化性能和收敛速度一般,局部搜索能力差 |
[ | MILP模型 | 滚动时域策略 | 在线进行且沿时间轴反复滚动优化 | 算法主要思想在于转化解的时域,在较小且重叠的时域范围内求解,具有计算速度快、计算结果精度高的优点,但算法结构通常较为复杂,应用局限性大 |
[ | MILP模型 | 滚动时域策略 | 在简单分解的基础上添加辅助时间片段 和安全保障约束 | |
[ | MINLP模型 | 遗传算法 | 提出NSGA-Ⅱ算法并使用一条染色体来 编码可行的时间表 | 算法主要思想在于以决策变量的编码作为运算对象,直接以目标函数值作为搜索信息,具有计算简单,全局搜索性好的优点,但算法的计算效率低,易过早收敛,且需对不可行解采用阈值 |
[ | MINLP模型 | 遗传算法 | 利用加权函数将多目标问题转化为单 目标问题 | |
[ | MINLP模型 | 遗传算法 | 提出NSGA-Ⅲ算法并将多目标优化问题 转换为离散的动态资源分配问题 | |
[ | MINLP模型 | 遗传算法 | 提出SAGA算法并使得GA染色体使用 基于图的表示形式 |
文献 | 优化模型 | 优化算法 | 算法创新点 | 算法设计思路与优缺点 |
---|---|---|---|---|
[ | MIP模型 | 广义梯度下降法 | — | 算法的主要思想在于递归性地逼近最小偏差模型从而得到局部最优解,结构简单、计算快速;但非线性拟合能力差 |
[ | MILP模型 | 迭代算法 | MINLP模型被多个连续的MILP 模型近似代替 | 算法的主要思想在于通过迭代以降低模型决策变量维数及约束条件线性化,具有适用范围广、非线性系统拟合能力强的优点;但求解时间会随迭代次数增加而快速增加,且优化结果性能一般 |
[ | MINLP模型 | 迭代算法 | 提出MILP-NLP和MILP- MINLP 两步求解策略 | |
[ | MILP模型 | 松弛算法 | 引入SPM、MPM及其修正模型以 确定解的上下界 | 算法主要思想在于求出解的下界以缩小解空间,适用于组合优化问题;但优化结果性能较差,且在一些情况下无法得到可行解 |
[ | MINLP模型 | 松弛算法 | 利用分段线性松弛将混合原油 性质计算转化为线性形式 | |
[ | MINLP模型 | 松弛算法 | 通过求解MINLP对非凸最小值的 松弛得到解的上下界 | |
[ | MINLP模型 | 松弛算法 | 提出PMCR和NMDT技术以计算 全局最优估计 | |
[ | MIQCP模型 | 离散化算法 | 利用IHCD法将MIQCP模型近似 为MILP模型 | 算法的主要思想在于在不改变数据相对大小的前提下对数据进行相应缩小,本质是一种哈希算法,适用于非线性问题且对异常数据鲁棒性较强;但对于数据的区间划分要求极高 |
[ | MINLP模型 | 启发式算法 | 提出一种基于NLP-MILP两层 分解的启发式算法 | 算法的主要思想在于通过邻域搜索,逼近最优解从而得到相对优解,求解快速有效;但不适用于大规模NP问题且无法保证得到全局最优解 |
[ | MINLP模型 | 启发式算法 | 引入一系列将非线性约束线性化 的启发式规则 | |
[ | MINLP模型 | 序优化算法 | 利用序优化求解具有顺序-连续 变量两层结构优化问题 | 算法的主要思想在于寻优过程通过解空间采样、粗糙评价和排序比较等策略以得到较好的解,可极大减少求解计算量;但无法保证得到最优解 |
[ | MINLP模型 | 聚类算法 | 利用K-means聚类算法克服数据 中极端值和异常值的影响 | 算法主要思想在于给定一个数据点集合和聚类数目K,根据距离函数将数据分入K个聚类中,算法简单且易实现;但对数据要求高,在大规模数据上收敛较慢,K值难以选取 |
[ | MINLP模型 | 分枝定界法 | 基于分枝定界的全局优化方法有效 减少了模型的变量和约束数量 | 算法的主要思想在于缩小解的搜索空间,具有算法结构简单的优点;但计算速度慢,对于模型规模存在严格限制,无法求解具有大规模变量的优化模型 |
[ | MINLP模型 | 分枝定界法 | 提出基于分枝定界法中双线性项 的分段线性下界估计理论 |
Table 3 Model and algorithm methods of crude oil blending process based on mathematical programming
文献 | 优化模型 | 优化算法 | 算法创新点 | 算法设计思路与优缺点 |
---|---|---|---|---|
[ | MIP模型 | 广义梯度下降法 | — | 算法的主要思想在于递归性地逼近最小偏差模型从而得到局部最优解,结构简单、计算快速;但非线性拟合能力差 |
[ | MILP模型 | 迭代算法 | MINLP模型被多个连续的MILP 模型近似代替 | 算法的主要思想在于通过迭代以降低模型决策变量维数及约束条件线性化,具有适用范围广、非线性系统拟合能力强的优点;但求解时间会随迭代次数增加而快速增加,且优化结果性能一般 |
[ | MINLP模型 | 迭代算法 | 提出MILP-NLP和MILP- MINLP 两步求解策略 | |
[ | MILP模型 | 松弛算法 | 引入SPM、MPM及其修正模型以 确定解的上下界 | 算法主要思想在于求出解的下界以缩小解空间,适用于组合优化问题;但优化结果性能较差,且在一些情况下无法得到可行解 |
[ | MINLP模型 | 松弛算法 | 利用分段线性松弛将混合原油 性质计算转化为线性形式 | |
[ | MINLP模型 | 松弛算法 | 通过求解MINLP对非凸最小值的 松弛得到解的上下界 | |
[ | MINLP模型 | 松弛算法 | 提出PMCR和NMDT技术以计算 全局最优估计 | |
[ | MIQCP模型 | 离散化算法 | 利用IHCD法将MIQCP模型近似 为MILP模型 | 算法的主要思想在于在不改变数据相对大小的前提下对数据进行相应缩小,本质是一种哈希算法,适用于非线性问题且对异常数据鲁棒性较强;但对于数据的区间划分要求极高 |
[ | MINLP模型 | 启发式算法 | 提出一种基于NLP-MILP两层 分解的启发式算法 | 算法的主要思想在于通过邻域搜索,逼近最优解从而得到相对优解,求解快速有效;但不适用于大规模NP问题且无法保证得到全局最优解 |
[ | MINLP模型 | 启发式算法 | 引入一系列将非线性约束线性化 的启发式规则 | |
[ | MINLP模型 | 序优化算法 | 利用序优化求解具有顺序-连续 变量两层结构优化问题 | 算法的主要思想在于寻优过程通过解空间采样、粗糙评价和排序比较等策略以得到较好的解,可极大减少求解计算量;但无法保证得到最优解 |
[ | MINLP模型 | 聚类算法 | 利用K-means聚类算法克服数据 中极端值和异常值的影响 | 算法主要思想在于给定一个数据点集合和聚类数目K,根据距离函数将数据分入K个聚类中,算法简单且易实现;但对数据要求高,在大规模数据上收敛较慢,K值难以选取 |
[ | MINLP模型 | 分枝定界法 | 基于分枝定界的全局优化方法有效 减少了模型的变量和约束数量 | 算法的主要思想在于缩小解的搜索空间,具有算法结构简单的优点;但计算速度慢,对于模型规模存在严格限制,无法求解具有大规模变量的优化模型 |
[ | MINLP模型 | 分枝定界法 | 提出基于分枝定界法中双线性项 的分段线性下界估计理论 |
文献 | 优化模型 | 优化方法 | 研究创新点 | 方法设计思路与优缺点 |
---|---|---|---|---|
[ | MINLP模型 | 柔性调度 | 提出将双线性项线性化的启发式算法 | 方法主要思路是降低工序对资源的竞争,从而使得生产系统在不确定性因素干扰的情况下能够保持正常运行,适用性强且一般情况下可以保证得到最优解;但对模型规模大小具有严格限制,求解效率较低 |
[ | MINLP模型 | 柔性调度 | 提出CFI来表征炼油厂处理原油交货 延迟不确定性的能力 | |
[ | MINLP模型 | 柔性调度 | 利用柔性调度提出操作窗口概念 | |
[ | MINLP模型 | 柔性调度 | 提出适用于取消对称突破约束优化 问题的RTW和EFTS模型 | |
[ | MINLP模型 | 鲁棒优化 | 提出一个两阶段鲁棒模型处理具有 连续和离散概率分布的不确定性 参数 | 方法主要思路是在建模过程中充分考虑不确定性,并以集合的形式对变量进行描述,其模型鲁棒性强,最优解对参数变化的敏感性低;但计算结果受限于不确定集,很难直接求解 |
[ | MINLP模型 | 模糊规划 | 利用机会约束规划和模糊规划将不 确定性约束转化为对应的确定性 约束 | 方法主要思路是当无法提供准确决策时依据决策者的个人经验来获取不确定参数的模糊隶属函数,模型结构简单,计算相对简单;但在实际运用过程中需要经过反复调整,求解效率低 |
[ | MINLP模型 | 反应性调度 | 基于SAGA算法提出一种反应性原油 调度方法 | 方法主要思路是针对临时出现的不确定性扰动实时进行重新调度,以消除或减小不确定性因素对调度方案影响,适用于实际生产问题;但对于模型的精度要求很高且不适用于对反应速度敏感的调度问题 |
[ | MINLP模型 | 反应性调度 | 针对不同的不确定性情况提出两阶段 求解步骤 | |
[ | MINLP模型 | 反应性调度 | 提出一种结合预防和反应两种方法 特点的混合策略 | |
[ | MINLP模型 | 随机规划 | 提出一种结合松弛和紧缩的逼近方法 将联合机会约束近似地转换为一 系列参数化线性约束 | 方法主要思路是根据不同的决策规则,分别通过期望模型等处理随机性数据的规划求解问题,灵活性高;但不能保证求解结果的可靠性 |
Table 4 Methods of crude oil operations process optimization under uncertainty conditions
文献 | 优化模型 | 优化方法 | 研究创新点 | 方法设计思路与优缺点 |
---|---|---|---|---|
[ | MINLP模型 | 柔性调度 | 提出将双线性项线性化的启发式算法 | 方法主要思路是降低工序对资源的竞争,从而使得生产系统在不确定性因素干扰的情况下能够保持正常运行,适用性强且一般情况下可以保证得到最优解;但对模型规模大小具有严格限制,求解效率较低 |
[ | MINLP模型 | 柔性调度 | 提出CFI来表征炼油厂处理原油交货 延迟不确定性的能力 | |
[ | MINLP模型 | 柔性调度 | 利用柔性调度提出操作窗口概念 | |
[ | MINLP模型 | 柔性调度 | 提出适用于取消对称突破约束优化 问题的RTW和EFTS模型 | |
[ | MINLP模型 | 鲁棒优化 | 提出一个两阶段鲁棒模型处理具有 连续和离散概率分布的不确定性 参数 | 方法主要思路是在建模过程中充分考虑不确定性,并以集合的形式对变量进行描述,其模型鲁棒性强,最优解对参数变化的敏感性低;但计算结果受限于不确定集,很难直接求解 |
[ | MINLP模型 | 模糊规划 | 利用机会约束规划和模糊规划将不 确定性约束转化为对应的确定性 约束 | 方法主要思路是当无法提供准确决策时依据决策者的个人经验来获取不确定参数的模糊隶属函数,模型结构简单,计算相对简单;但在实际运用过程中需要经过反复调整,求解效率低 |
[ | MINLP模型 | 反应性调度 | 基于SAGA算法提出一种反应性原油 调度方法 | 方法主要思路是针对临时出现的不确定性扰动实时进行重新调度,以消除或减小不确定性因素对调度方案影响,适用于实际生产问题;但对于模型的精度要求很高且不适用于对反应速度敏感的调度问题 |
[ | MINLP模型 | 反应性调度 | 针对不同的不确定性情况提出两阶段 求解步骤 | |
[ | MINLP模型 | 反应性调度 | 提出一种结合预防和反应两种方法 特点的混合策略 | |
[ | MINLP模型 | 随机规划 | 提出一种结合松弛和紧缩的逼近方法 将联合机会约束近似地转换为一 系列参数化线性约束 | 方法主要思路是根据不同的决策规则,分别通过期望模型等处理随机性数据的规划求解问题,灵活性高;但不能保证求解结果的可靠性 |
1 | Pan L Y, Liu P, Li Z. A system dynamic analysis of China's oil supply chain: over-capacity and energy security issues[J]. Applied Energy, 2017, 188: 508-520. |
2 | Yuan M, Zhang H R, Wang B H, et al. Downstream oil supply security in China: policy implications from quantifying the impact of oil import disruption[J]. Energy Policy, 2020, 136: 111077. |
3 | Wang Q, Li S Y, Li R R. China's dependency on foreign oil will exceed 80% by 2030: developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions[J]. Energy, 2018, 163: 151-167. |
4 | 张新成. PIMS软件在进口原油采购中的应用探讨[J]. 化工技术经济, 2003, 21(6): 6-9, 14. |
Zhang X C. Research of optimizing the plan of crude oil importation by using PIMS software[J]. Chemical Techno-Economics, 2003, 21(6): 6-9, 14. | |
5 | Naser H. Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach[J]. Energy Economics, 2016, 56: 75-87. |
6 | He K J, Zha R, Wu J, et al. Multivariate EMD-based modeling and forecasting of crude oil price[J]. Sustainability, 2016, 8(4): 387. |
7 | Mostafa M M, El-Masry A A. Oil price forecasting using gene expression programming and artificial neural networks[J]. Economic Modelling, 2016, 54: 40-53. |
8 | Lux T, Segnon M, Gupta R. Forecasting crude oil price volatility and value-at-risk: evidence from historical and recent data[J]. Energy Economics, 2016, 56: 117-133. |
9 | Wang Y D, Liu L, Wu C F. Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models[J]. Energy Economics, 2017, 66: 337-348. |
10 | Hao X F, Zhao Y Y, Wang Y D. Forecasting the real prices of crude oil using robust regression models with regularization constraints[J]. Energy Economics, 2020, 86: 104683. |
11 | Lee C Y, Huh S Y. Forecasting long-term crude oil prices using a Bayesian model with informative priors[J]. Sustainability, 2017, 9(2): 190. |
12 | Funk C. Forecasting the real price of oil - time-variation and forecast combination[J]. Energy Economics, 2018, 76: 288-302. |
13 | Li J C, Zhu S W, Wu Q Q. Monthly crude oil spot price forecasting using variational mode decomposition[J]. Energy Economics, 2019, 83: 240-253. |
14 | 张跃军, 张晗, 王金丽. 考虑结构变化和长记忆性的国际原油价格波动率预测研究[J]. 中国管理科学, 2021, 29(9): 54-64. |
Zhang Y J, Zhang H, Wang J L. Volatility forecasting of crude oil market based on structural changes and long memory[J]. Chinese Journal of Management Science, 2021, 29(9): 54-64. | |
15 | Liu L, Wang Y D, Yang L. Predictability of crude oil prices: an investor perspective[J]. Energy Economics, 2018, 75: 193-205. |
16 | Wang J, Zhou H, Hong T, et al. A multi-granularity heterogeneous combination approach to crude oil price forecasting[J]. Energy Economics, 2020, 91: 104790. |
17 | Shah N. Mathematical programming techniques for crude oil scheduling[J]. Computers & Chemical Engineering, 1996, 20: S1227-S1232. |
18 | Lee H, Pinto J M, Grossmann I E, et al. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management[J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1630-1641. |
19 | Li W K, Hui C W, Li P, et al. Refinery planning under uncertainty[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6742-6755. |
20 | Li W K, Hui C W, Hua B, et al. Scheduling crude oil unloading, storage, and processing[J]. Industrial & Engineering Chemistry Research, 2002, 41(26): 6723-6734. |
21 | Castro P M, Grossmann I E. Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 15127-15145. |
22 | Castro P M. Source-based discrete and continuous-time formulations for the crude oil pooling problem[J]. Computers & Chemical Engineering, 2016, 93: 382-401. |
23 | Zhang H R, Liang Y T, Liao Q, et al. Mixed-time mixed-integer linear programming for optimal detailed scheduling of a crude oil port depot[J]. Chemical Engineering Research and Design, 2018, 137: 434-451. |
24 | Reddy P C P, Karimi I A, Srinivasan R. Novel solution approach for optimizing crude oil operations[J]. AIChE Journal, 2004, 50(6): 1177-1197. |
25 | Reddy P C P, Karimi I A, Srinivasan R. A new continuous-time formulation for scheduling crude oil operations[J]. Chemical Engineering Science, 2004, 59(6): 1325-1341. |
26 | Li J, Li W K, Karimi I A, et al. Improving the robustness and efficiency of crude scheduling algorithms[J]. AIChE Journal, 2007, 53(10): 2659-2680. |
27 | Furman K C, Jia Z Y, Ierapetritou M G. A robust event-based continuous time formulation for tank transfer scheduling[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9126-9136. |
28 | Zhang S J, Xu Q. Refinery continuous-time crude scheduling with consideration of long-distance pipeline transportation[J]. Computers & Chemical Engineering, 2015, 75: 74-94. |
29 | Zimberg B, Camponogara E, Reception Ferreira E., mixture, and transfer in a crude oil terminal[J]. Computers & Chemical Engineering, 2015, 82: 293-302. |
30 | Xu J L, Zhang S J, Zhang J, et al. Simultaneous scheduling of front-end crude transfer and refinery processing[J]. Computers & Chemical Engineering, 2017, 96: 212-236. |
31 | Yang K, Liu Y W. Optimization of production operation scheme in the transportation process of different proportions of commingled crude oil[J]. Journal of Engineering Science and Technology Review, 2017, 10(6): 171-178. |
32 | 周智菊, 周祥, 周涵. 基于滚动时域分解策略的原油混输调度模型[J]. 石油学报(石油加工), 2021, 37(2): 320-329. |
Zhou Z J, Zhou X, Zhou H. Scheduling model based on rolling-horizon algorithm for crude oil transportation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(2): 320-329. | |
33 | 周智菊, 周祥, 郭锦标, 等. 基于异步时间段的连续时间原油混输调度模型[J]. 石油炼制与化工, 2015, 46(6): 95-100. |
Zhou Z J, Zhou X, Guo J B, et al. An asynchronous time slot-based continuous time formulation for scheduling crude oil operations[J]. Petroleum Processing and Petrochemicals, 2015, 46(6): 95-100. | |
34 |
岳修明, 王和胜, 张永利, 等. 基于启发式规则的炼厂原油调度优化[J]. 计算机与应用化学, doi:10.16866/j.com.app.chem202002009.
DOI URL |
Yue X M, Wang H S, Zhang Y L, et al. Optimization of refinery crude oil scheduling based on heuristic rules[J]. Computers and Applied Chemistry, doi:10.16866/j.com.app.chem202002009.
DOI URL |
|
35 | Rocha R, Grossmann I E, Poggi de Aragão M V S. Petroleum allocation at PETROBRAS: mathematical model and a solution algorithm[J]. Computers & Chemical Engineering, 2009, 33(12): 2123-2133. |
36 | Fischetti M, Lodi A. Local branching[J]. Mathematical Programming, 2003, 98(1/2/3): 23-47. |
37 | Hamisu A A, Kabantiok S, Wang M H. Refinery scheduling of crude oil unloading with tank inventory management[J]. Computers & Chemical Engineering, 2013, 55: 134-147. |
38 | Zhao Y M, Wu N Q, Li Z W, et al. A novel solution approach to a priority-slot-based continuous-time mixed integer nonlinear programming formulation for a crude-oil scheduling problem[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10955-10967. |
39 | Assis L S, Camponogara E, Menezes B C, et al. An MINLP formulation for integrating the operational management of crude oil supply[J]. Computers & Chemical Engineering, 2019, 123: 110-125. |
40 | Assis L S, Camponogara E, Grossmann I E. A MILP-based clustering strategy for integrating the operational management of crude oil supply[J]. Computers & Chemical Engineering, 2021, 145: 107161. |
41 | Hou Y, Wu N Q, Zhou M C, et al. Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(3): 517-530. |
42 | Hou Y, Wu N Q, Li Z W. A genetic algorithm approach to short-term scheduling of crude oil operations in refinery[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11(5): 593-603. |
43 | Hou Y, Wu N Q, Li Z W, et al. Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency[J]. Swarm and Evolutionary Computation, 2020, 57: 100714. |
44 | Ramteke M, Srinivasan R. Large-scale refinery crude oil scheduling by integrating graph representation and genetic algorithm[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5256-5272. |
45 | Zhou M C, Modeling Venkatesh K., Simulation, and Control of Flexible Manufacturing Systems[M]. Singapore: World Scientific, 1999. |
46 | Xiong H H, Zhou M C. Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search[J]. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(3): 384-393. |
47 | Wu N Q, Bai L P, Chu C B. Hybrid Petri net modeling for refinery process[C]//2004 IEEE International Conference on Systems, Man and Cybernetics. The Hague, Netherlands: IEEE, 2004: 1734-1739. |
48 | Wu N Q, Qian Y M, Zhou M C, et al. Issues on short-term scheduling of oil refinery[C]//2006 IEEE International Conference on Systems, Man and Cybernetics. Taipei, Taiwan, China: IEEE, 2006: 2920-2925. |
49 | Wu N Q, Zhou M C, Chu F. A petri net-based heuristic algorithm for realizability of target refining schedule for oil refinery[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(4): 661-676. |
50 | Wu N Q, Chu F, Chu C B, et al. Short-term schedulability analysis of crude oil operations in refinery with oil residency time constraint using petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38: 765-778. |
51 | Wu N Q, Chu F, Chu C B, et al. Short-term schedulability analysis of multiple distiller crude oil operations in refinery with oil residency time constraint[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(1): 1-16. |
52 | Wu N Q, Bai L P, Zhou M C, et al. A novel approach to optimization of refining schedules for crude oil operations in refinery[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1042-1053. |
53 | Wu N Q, Zhou M C, Li Z W. Short-Term Scheduling of Crude-Oil Operations[J]. IEEE Robotics & Automation Magazine, 2015, 64-76. |
54 | Wu N Q, Chu F, Chu C B, et al. Hybrid Petri net modeling and schedulability analysis of high fusion point oil transportation under tank grouping strategy for crude oil operations in refinery[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2010, 40(2): 159-175. |
55 | Wu N Q, Zhu M C, Bai L P, et al. Short-term scheduling of crude oil operations in refinery with high-fusion-point oil and two transportation pipelines[J]. Enterprise Information Systems, 2016, 10(6): 581-610. |
56 | Wu N Q, Chu F, Chu C B, et al. Tank cycling and scheduling analysis of high fusion point oil transportation for crude oil operations in refinery[J]. Computers & Chemical Engineering, 2010, 34(4): 529-543. |
57 | Wu N Q, Chu C B, Chu F, et al. Schedulability analysis of short-term scheduling for crude oil operations in refinery with oil residency time and charging-tank-switch-overlap constraints[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(1): 190-204. |
58 | Zhang S W, Wu N Q, Li Z W, et al. Petri net-based approach to short-term scheduling of crude oil operations with less tank requirement[J]. Information Sciences, 2017, 417: 247-261. |
59 | Zhang S W, Wu N Q, Li Z W. Scheduling of crude oil operations in refineries with least tank requirement[C]//2017 13th IEEE Conference on Automation Science and Engineering (CASE). Xi'an: IEEE, 2017: 243-248. |
60 | An Y, Wu N Q, Hon C, et al. Scheduling of crude oil operations in refinery without sufficient charging tanks using petri nets[J]. Applied Sciences, 2017, 7(6): 564. |
61 | An Y, Wu N Q. Scheduling of crude oil operations for minimizing the usage of simultaneously-charging-and-feeding mode[C]//2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China: IEEE, 2018: 1-6. |
62 | Symonds G H. Linear Programming—the Solution of Refinery Problems[M]. New York: Esso Standard Oil Company, 1955. |
63 | Moro L F, Pinto J M. A mixed-integer model for short-term crude oil scheduling[R]. AIChE Annual National Meeting, 1998. |
64 | Moro L F L, Zanin A C, Pinto J M. A planning model for refinery diesel production[J]. Computers & Chemical Engineering, 1998, 22: S1039-S1042. |
65 | Pinto J M, Joly M, Moro L F L. Planning and scheduling models for refinery operations[J]. Computers & Chemical Engineering, 2000, 24(9/10): 2259-2276. |
66 | Neiro S M S, Pinto J M. A general modeling framework for the operational planning of petroleum supply chains[J]. Computers & Chemical Engineering, 2004, 28(6/7): 871-896. |
67 | Méndez C A, Grossmann I E, Harjunkoski I, et al. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations[J]. Computers & Chemical Engineering, 2006, 30(4): 614-634. |
68 | Li J, Karimi I A, Srinivasan R. Recipe determination and scheduling of gasoline blending operations[J]. AIChE Journal, 2010, 56(2): 441-465. |
69 | Beach B, Hildebrand R, Ellis K, et al. An approximate method for the optimization of long-horizon tank blending and scheduling operations[J]. Computers & Chemical Engineering, 2020, 141: 106839. |
70 | Castillo P A C, Mahalec V, Kelly J D. Inventory pinch algorithm for gasoline blend planning[J]. AIChE Journal, 2013, 59(10): 3748-3766. |
71 | 周祥, 周智菊, 吕宁, 等. 原油调度优化中的分段线性松弛研究[J]. 石油炼制与化工, 2016, 47(8): 93-97. |
Zhou X, Zhou Z J, Lü N, et al. Study on piecewise linear relaxation for crude scheduling optimization[J]. Petroleum Processing and Petrochemicals, 2016, 47(8): 93-97. | |
72 | 江永亨, 蔡阳阳, 黄德先. 基于序的原油调合调度问题[J]. 化工学报, 2010, 61(2): 365-368. |
Jiang Y H, Cai Y Y, Huang D X. Crude oil blending scheduling problem based on order[J]. CIESC Journal, 2010, 61(2): 365-368. | |
73 | 江永亨, 蔡阳阳, 黄德先. 无主炼原油的原油调和调度问题[J]. 化工学报, 2010, 61(8): 2015-2020. |
Jiang Y H, Cai Y Y, Huang D X. Crude oil blending schedule problem without primary oil[J]. CIESC Journal, 2010, 61(8): 2015-2020. | |
74 | 摆亮, 江永亨, 黄德先. 基于序优化的原油调合调度问题中掺炼序列评价的分布研究[J]. 计算机与应用化学, 2012, 29(1): 1-4. |
Bai L, Jiang Y H, Huang D X. Simulation study on probability distribution of sequence evaluation in order-based crude oil blending scheduling problem[J]. Computers and Applied Chemistry, 2012, 29(1): 1-4. | |
75 | Yang H K, Bernal D E, Franzoi R E, et al. Integration of crude-oil scheduling and refinery planning by Lagrangean decomposition[J]. Computers & Chemical Engineering, 2020, 138: 106812. |
76 | Li M. Refinery operations optimization integrated production process and gasoline blending[J]. Journal of Physics: Conference Series, 2020, 1626: 012111. |
77 | Cerdá J, Pautasso P C, Cafaro D C. A cost-effective model for the gasoline blend optimization problem[J]. AIChE Journal, 2016, 62(9): 3002-3019. |
78 | Cerdá J, Pautasso P C, Cafaro D C. Optimizing gasoline recipes and blending operations using nonlinear blend models[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7782-7800. |
79 | Zhao Y M, Wu N Q, Li Z W. A novel solution approach to scheduling of crude-oil operations based on an improved continuous-time formulation[C]//2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC). Calabria, Italy: IEEE, 2017: 482-487. |
80 | Bayu F, Shaik M A, Ramteke M. Scheduling of crude oil refinery operation with desalting as a separate task[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(6): e2539. |
81 | 杨佳丽, 荣冈. 结合质量传递及约束的炼油生产计划优化[J]. 化工学报, 2010, 61(1): 124-131. |
Yang J L, Rong G. Refinery planning optimization integrated with quality tracking and constraints[J]. CIESC Journal, 2010, 61(1): 124-131. | |
82 | Mouret S, Grossmann I E, Pestiaux P. A novel priority-slot based continuous-time formulation for crude-oil scheduling problems[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8515-8528. |
83 | Mouret S, Grossmann I E, Pestiaux P. Time representations and mathematical models for process scheduling problems[J]. Computers & Chemical Engineering, 2011, 35(6): 1038-1063. |
84 | Jia Z Y, Ierapetritou M, Kelly J D. Refinery short-term scheduling using continuous time formulation: crude-oil operations[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3085-3097. |
85 | Jia Z Y, Ierapetritou M. Mixed-integer linear programming model for gasoline blending and distribution scheduling[J]. Industrial & Engineering Chemistry Research, 2003, 42(4): 825-835. |
86 | Glismann K, Gruhn G. Short-term planning of blending processes: scheduling and nonlinear optimization of recipes[J]. Chemical Engineering & Technology, 2001, 24(3): 246-249. |
87 | Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blending processes[J]. Computers & Chemical Engineering, 2001, 25(4/5/6): 627-634. |
88 | Ryoo H S, Sahinidis N V. Global optimization of nonconvex NLPs and MINLPs with applications in process design[J]. Computers & Chemical Engineering, 1995, 19(5): 551-566. |
89 | Karuppiah R, Furman K C, Grossmann I E. Global optimization for scheduling refinery crude oil operations[J]. Computers & Chemical Engineering, 2008, 32(11): 2745-2766. |
90 | Saharidis G K D, Minoux M, Dallery Y. Scheduling of loading and unloading of crude oil in a refinery using event-based discrete time formulation[J]. Computers & Chemical Engineering, 2009, 33(8): 1413-1426. |
91 | Saharidis G K D, Ierapetritou M G. Scheduling of loading and unloading of crude oil in a refinery with optimal mixture preparation[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2624-2633. |
92 | Li J, Misener R, Floudas C A. Continuous-time modeling and global optimization approach for scheduling of crude oil operations[J]. AIChE Journal, 2012, 58(1): 205-226. |
93 | Castillo P A C, Castro P M, Mahalec V. Global optimization of nonlinear blend-scheduling problems[J]. Engineering, 2017, 3(2): 188-201. |
94 | Kelly J D, Menezes B C, Engineer F, et al. Crude oil blend scheduling optimization of an industrial-sized refinery: a discrete-time benchmark[C]//Foundations of Computer Aided Process Operations / Chemical Process Control. At: Tucson, 2017. |
95 | Menezes B C, Grossmann I E, Kelly J D. Enterprise-wide optimization for operations of crude-oil refineries: closing the procurement and scheduling gap[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2017: 1249-1254. |
96 | 李亚平, 刘伟, 张刘军, 等. 炼油生产中的原油多周期调度优化[J]. 计算机集成制造系统, 2015, 21(2): 503-509. |
Li Y P, Liu W, Zhang L J, et al. Multi-period scheduling optimization for crude oil in oil refinery production[J]. Computer Integrated Manufacturing Systems, 2015, 21(2): 503-509. | |
97 | Pan M, Qian Y, Li X X. Flexible scheduling model of crude oil operations under crude supply disturbance[J]. Science in China Series B: Chemistry, 2009, 52(3): 387-400. |
98 | Pan M, Li X X, Qian Y. New approach for scheduling crude oil operations[J]. Chemical Engineering Science, 2009, 64(5): 965-983. |
99 | Wang J S, Rong G, Feng L P. Optimizing crude oil operations under uncertainty[C]//13th IFAC Symposium on Information Control Problems in Manufacturing. Elsevier, 2009: 1020-1025. |
100 | Wang J S, Rong G. Robust optimization model for crude oil scheduling under uncertainty[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1737-1748. |
101 | Zhang J, Wen Y Q, Xu Q. Simultaneous optimization of crude oil blending and purchase planning with delivery uncertainty consideration[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8453-8464. |
102 | Panda D, Ramteke M. Reactive scheduling of crude oil using structure adapted genetic algorithm under multiple uncertainties[J]. Computers & Chemical Engineering, 2018, 116: 333-351. |
103 | 潘明, 钱宇, 李秀喜. 原油供应波动状况下炼油厂生产柔性调度的建模[J]. 中国科学(B辑: 化学), 2008, 38(9): 829-843. |
Pan M, Qian Y, Li X X. Modeling of production flexible scheduling in oil refinery under fluctuation of crude oil supply[J]. Science in China (Series B: Chemistry), 2008, 38(9): 829-843. | |
104 | Gupta S, Zhang N. Flexible scheduling of crude oil inventory management[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1325-1332. |
105 | Duan Q Q, Yang G K, Pan C C. Multi-period planning of refinery crude oil scheduling problem with fluctuating demands[J]. IFAC Proceedings Volumes, 2013, 46(13): 313-320. |
106 | Duan Q Q, Yang G K, Xu G L, et al. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming[J]. The Scientific World Journal, 2014, 2014: 730314. |
107 | Zhang S J, Xu Q. Reactive scheduling of short-term crude oil operations under uncertainties[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12502-12518. |
108 | Panda D, Ramteke M. Reactive scheduling of crude oil using structure adapted genetic algorithm under multiple uncertainties[J]. Computers & Chemical Engineering, 2018, 116(4): 333-351. |
109 | Neiro S M D S, Murata V, Jahn B, et al. Dealing with multiple tank outflows and in-line blending in continuous-time crude oil scheduling problems[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4495-4510. |
110 | Dai X, Wang X Q, He R C, et al. Data-driven robust optimization for crude oil blending under uncertainty[J]. Computers & Chemical Engineering, 2020, 136: 106595. |
111 | Panda D, Ramteke M. Dynamic hybrid scheduling of crude oil using structure adapted genetic algorithm for uncertainty of tank unavailability[J]. Chemical Engineering Research and Design, 2020, 159: 78-91. |
112 | 钱锋, 杜文莉, 钟伟民, 等. 石油和化工行业智能优化制造若干问题及挑战[J]. 自动化学报, 2017, 43(6): 893-901. |
Qian F, Du W L, Zhong W M, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901. | |
113 | 柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报, 2013, 39(11): 1744-1757. |
Chai T Y. Operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica, 2013, 39(11): 1744-1757. | |
114 | 桂卫华, 阳春华, 陈晓方, 等. 有色冶金过程建模与优化的若干问题及挑战[J]. 自动化学报, 2013, 39(3): 197-207. |
Gui W H, Yang C H, Chen X F, et al. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes[J]. Acta Automatica Sinica, 2013, 39(3): 197-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||