CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 266-274.DOI: 10.11949/0438-1157.20211431
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Junqi WENG1(),Xinlei LIU1,Jiahao YU1,Yao SHI1,Guanghua YE1(),Jin QU2(),Xuezhi DUAN1,Jinbing LI2,Xinggui ZHOU1
Received:
2021-10-08
Revised:
2021-12-20
Online:
2022-01-18
Published:
2022-01-05
Contact:
Guanghua YE,Jin QU
翁俊旗1(),刘鑫磊1,余佳豪1,施尧1,叶光华1(),屈进2(),段学志1,李金兵2,周兴贵1
通讯作者:
叶光华,屈进
作者简介:
翁俊旗(1998—),男,硕士研究生,基金资助:
CLC Number:
Junqi WENG, Xinlei LIU, Jiahao YU, Yao SHI, Guanghua YE, Jin QU, Xuezhi DUAN, Jinbing LI, Xinggui ZHOU. Influence of hollow structure of honeycomb catalysts on the pressure drop in packed bed reactors[J]. CIESC Journal, 2022, 73(1): 266-274.
翁俊旗, 刘鑫磊, 余佳豪, 施尧, 叶光华, 屈进, 段学志, 李金兵, 周兴贵. 蜂窝状催化剂中空结构对固定床反应器压降的影响[J]. 化工学报, 2022, 73(1): 266-274.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
进口温度Tin | 220℃ |
出口压力Pout | 10 atm(1 atm=101325 Pa) |
进口流速uin | 1 m/s |
进口氧气摩尔分数XO | 8% |
进口乙烯摩尔分数XC | 36% |
进口氮气摩尔分数XN | 44% |
进口二氧化碳摩尔分数XCO | 12% |
反应管内径D | 35 mm |
黏度μ | 2.26×10-5 Pa?s |
密度ρ | 6.41 kg/m3 |
Table 1 Boundary conditions and model parameters for flow simulations
参数 | 数值 |
---|---|
进口温度Tin | 220℃ |
出口压力Pout | 10 atm(1 atm=101325 Pa) |
进口流速uin | 1 m/s |
进口氧气摩尔分数XO | 8% |
进口乙烯摩尔分数XC | 36% |
进口氮气摩尔分数XN | 44% |
进口二氧化碳摩尔分数XCO | 12% |
反应管内径D | 35 mm |
黏度μ | 2.26×10-5 Pa?s |
密度ρ | 6.41 kg/m3 |
外形 | 平均空隙率 | 压降(ΔP/L)/(Pa/m) | 表观反应速率/(mol/(m3·s) |
---|---|---|---|
单孔柱 | 0.582 | 3660 | 5.56 |
七孔柱 | 0.579 | 3982 | 7.73 |
Table 2 Voidages, pressure drops, and apparent reaction rates of catalyst in the beds packed with Raschig ring and seven-hole cylinder catalyst pellets
外形 | 平均空隙率 | 压降(ΔP/L)/(Pa/m) | 表观反应速率/(mol/(m3·s) |
---|---|---|---|
单孔柱 | 0.582 | 3660 | 5.56 |
七孔柱 | 0.579 | 3982 | 7.73 |
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
3.86 | 1.56 | 5.60 | 0.514 | 4501 |
3.86 | 1.81 | 6.00 | 0.545 | 4320 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
3.86 | 2.15 | 6.80 | 0.599 | 3226 |
3.86 | 2.28 | 7.20 | 0.634 | 2802 |
Table 3 Dimensions of Raschig rings, as well as the voidages and pressure drops of their corresponding beds (R unchanged, but r and H varied)
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
3.86 | 1.56 | 5.60 | 0.514 | 4501 |
3.86 | 1.81 | 6.00 | 0.545 | 4320 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
3.86 | 2.15 | 6.80 | 0.599 | 3226 |
3.86 | 2.28 | 7.20 | 0.634 | 2802 |
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
5.09 | 2.00 | 3.20 | 0.524 | 4492 |
4.31 | 2.00 | 4.80 | 0.569 | 4002 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
3.57 | 2.00 | 8.00 | 0.622 | 3500 |
3.36 | 2.00 | 9.60 | 0.643 | 3188 |
Table 4 Dimensions of Raschig rings, as well as the voidages and pressure drops of their corresponding beds (r unchanged, but R and H varied)
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
5.09 | 2.00 | 3.20 | 0.524 | 4492 |
4.31 | 2.00 | 4.80 | 0.569 | 4002 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
3.57 | 2.00 | 8.00 | 0.622 | 3500 |
3.36 | 2.00 | 9.60 | 0.643 | 3188 |
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
3.46 | 1.00 | 6.40 | 0.461 | 5927 |
3.63 | 1.50 | 6.40 | 0.516 | 4728 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
4.15 | 2.50 | 6.40 | 0.642 | 3199 |
4.46 | 3.00 | 6.40 | 0.699 | 2188 |
Table 5 Dimensions of Raschig rings, as well as the voidages and pressure drops of their corresponding beds (H unchanged, but R and r varied)
外径R/mm | 内径r/mm | 高度H/mm | 平均空隙率 | 压降(ΔP/L)/(Pa/m) |
---|---|---|---|---|
3.46 | 1.00 | 6.40 | 0.461 | 5927 |
3.63 | 1.50 | 6.40 | 0.516 | 4728 |
3.86 | 2.00 | 6.40 | 0.582 | 3660 |
4.15 | 2.50 | 6.40 | 0.642 | 3199 |
4.46 | 3.00 | 6.40 | 0.699 | 2188 |
1 | Afandizadeh S, Foumeny E A. Design of packed bed reactors: guides to catalyst shape, size, and loading selection[J]. Applied Thermal Engineering, 2001, 21(6): 669-682. |
2 | Karthik G M, Buwa V V. Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed[J]. AIChE Journal, 2017, 63(1): 366-377. |
3 | Pashchenko D. Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: a combined experimental and numerical investigation[J]. Energy, 2019, 166: 462-470. |
4 | Liu X L, Qin B, Zhang Q F, et al. Optimizing catalyst supports at single catalyst pellet and packed bed reactor levels: a comparison study[J]. AIChE Journal, 2021, 67(8): e17163. |
5 | Partopour B, Dixon A G. Effect of particle shape on methanol partial oxidation in a fixed bed using CFD reactor modeling[J]. AIChE Journal, 2020, 66(5): e16904. |
6 | 张楠, 孙中宁, 阎昌琪. 三维随机填充球床通道内流场数值分析[J]. 原子能科学技术, 2012, 46(S2): 792-795. |
Zhang N, Sun Z N, Yan C Q. Numerical analysis of flow field in three-dimensional randomly packed pebble-bed channel[J]. Atomic Energy Science and Technology, 2012, 46(S2): 792-795. | |
7 | Mohanty R, Mohanty S, Mishra B K. Study of flow through a packed bed using discrete element method and computational fluid dynamics[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 71-80. |
8 | Wehinger G D, Kraume M, Berg V, et al. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations[J]. AIChE Journal, 2016, 62(12): 4436-4452. |
9 | Jurtz N, Kraume M, Wehinger G D. Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD)[J]. Reviews in Chemical Engineering, 2019, 35(2): 139-190. |
10 | Caulkin R, Jia X D, Fairweather M, et al. Predictions of porosity and fluid distribution through nonspherical-packed columns[J]. AIChE Journal, 2012, 58(5): 1503-1512. |
11 | Wehinger G D. Particle-Resolved CFD Simulations of Catalytic Flow Reactors[M]. Berlin: Technische Universitaet, 2016. |
12 | Jurtz N, Wehinger G D, Srivastava U, et al. Validation of pressure drop prediction and bed generation of fixed-beds with complex particle shapes using discrete element method and computational fluid dynamics[J]. AIChE Journal, 2020, 66(6): e16967. |
13 | Dong Y, Sosna B, Korup O, et al. Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements[J]. Chemical Engineering Journal, 2017, 317: 204-214. |
14 | Wehinger G D. Radiation matters in fixed-bed CFD simulations[J]. Chemie Ingenieur Technik, 2019, 91(5): 583-591. |
15 | Eppinger T, Wehinger G D. A generalized contact modification for fixed-bed reactor CFD simulations[J]. Chemie Ingenieur Technik, 2021, 93(1/2): 143-153. |
16 | Dixon A G, Boudreau J, Rocheleau A, et al. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 15839-15854. |
17 | Wehinger G D, Eppinger T, Kraume M. Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane[J]. Chemical Engineering Science, 2015, 122: 197-209. |
18 | Karthik G M, Buwa V V. A computational approach for the selection of optimal catalyst shape for solid-catalysed gas-phase reactions[J]. Reaction Chemistry & Engineering, 2020, 5(1): 163-182. |
19 | Dixon A G. Particle-resolved CFD simulation of fixed bed pressure drop at moderate to high Reynolds number[J]. Powder Technology, 2021, 385: 69-82. |
20 | Dixon A G. Local transport and reaction rates in a fixed bed reactor tube: exothermic partial oxidation of ethylene[J]. Chemical Engineering Science, 2021, 231: 116305. |
21 | Dixon A G, Nijemeisland M. CFD as a design tool for fixed-bed reactors[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5246-5254. |
22 | Liu X L, Peng C, Bai H X, et al. A pore network model for calculating pressure drop in packed beds of arbitrary-shaped particles[J]. AIChE Journal, 2020, 66(9): e16258. |
23 | Bender J, Erleben K, Trinkle J. Interactive simulation of rigid body dynamics in computer graphics[J]. Computer Graphics Forum, 2014, 33(1): 246-270. |
24 | Moghaddam E M, Foumeny E A, Stankiewicz A I, et al. Rigid body dynamics algorithm for modeling random packing structures of nonspherical and nonconvex pellets[J]. Industrial & Engineering Chemistry Research, 2018, 57(44): 14988-15007. |
25 | Dixon A G, Ertan Taskin M, Hugh Stitt E, et al. 3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients[J]. Chemical Engineering Science, 2007, 62(18/19/20): 4963-4966. |
26 | Seguin D, Montillet A, Comiti J. Experimental characterisation of flow regimes in various porous media(I): Limit of laminar flow regime[J]. Chemical Engineering Science, 1998, 53(21): 3751-3761. |
27 | Sosnowski M, Krzywanski J, Grabowska K, et al. Polyhedral meshing in numerical analysis of conjugate heat transfer[J]. EPJ Web of Conferences, 2018, 180: 02096. |
28 | Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios[J]. Chemical Engineering Journal, 2011, 166(1): 324-331. |
29 | Giese M, Rottschäfer K, Vortmeyer D. Measured and modeled superficial flow profiles in packed beds with liquid flow[J]. AIChE Journal, 1998, 44(2): 484-490. |
30 | Ribeiro A M, Neto P, Pinho C. Mean porosity and pressure drop measurements in packed beds of monosized spheres: side wall effects[J]. International Review of Chemical Engineering, 2010, 2(1): 40-46. |
31 | Eisfeld B, Schnitzlein K. The influence of confining walls on the pressure drop in packed beds[J]. Chemical Engineering Science, 2001, 56(14): 4321-4329. |
32 | 高崇, 潘银珍, 朱炳辰. 环柱状催化剂内强放热复合反应-传质-传热耦合过程研究(Ⅱ):本征反应动力学及反应-传质-传热耦合过程数学模型[J]. 化工学报, 1998, 49(5): 610-616. |
Gao C, Pan Y Z, Zhu B C. Study on coupling process of multiple reactions-mass transfer-heat transfer in hollow cylindrical catalysts with strong heat effect(Ⅱ): Intrinsic kinetics and mathematical model of coupling process of reaction-mass transfer-heat transfer[J]. Journal of Chemical Industry and Engineering (China), 1998, 49(5): 610-616. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||