CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6361-6370.DOI: 10.11949/0438-1157.20211071
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Chunjie XIE(),Ran HE,Xinlin TUO(),Wantai YANG()
Received:
2021-08-02
Revised:
2021-09-23
Online:
2021-12-22
Published:
2021-12-05
Contact:
Xinlin TUO,Wantai YANG
通讯作者:
庹新林,杨万泰
作者简介:
谢春杰(1991—),男,博士,基金资助:
CLC Number:
Chunjie XIE, Ran HE, Xinlin TUO, Wantai YANG. Preparation and performance of para-aramid aerogel powders[J]. CIESC Journal, 2021, 72(12): 6361-6370.
谢春杰, 何然, 庹新林, 杨万泰. 对位芳纶气凝胶粉体的制备与性能研究[J]. 化工学报, 2021, 72(12): 6361-6370.
Add to citation manager EndNote|Ris|BibTeX
项目 | PANF气凝胶 粉体 | PANF气凝胶 块体 |
---|---|---|
BET比表面积 /(m2?g-1) | 126.30 | 78.92 |
总孔体积 /(cm3?g-1) | 7.00 ×10-1① | 3.96 ×10-1② |
BJH法累积吸附孔体积 /(cm3?g-1) | 7.03 ×10-1 | 4.01 ×10-1 |
BJH法累积脱附孔体积 /(cm3?g-1) | 7.08 ×10-1 | 4.04 ×10-1 |
SF法孔体积 /(cm3?g-1) | 4.15 ×10-2 | 2.48 ×10-2 |
Table 1 Comparison of the surface area and pore volume of PANF aerogel powders and aerogel monoblock
项目 | PANF气凝胶 粉体 | PANF气凝胶 块体 |
---|---|---|
BET比表面积 /(m2?g-1) | 126.30 | 78.92 |
总孔体积 /(cm3?g-1) | 7.00 ×10-1① | 3.96 ×10-1② |
BJH法累积吸附孔体积 /(cm3?g-1) | 7.03 ×10-1 | 4.01 ×10-1 |
BJH法累积脱附孔体积 /(cm3?g-1) | 7.08 ×10-1 | 4.04 ×10-1 |
SF法孔体积 /(cm3?g-1) | 4.15 ×10-2 | 2.48 ×10-2 |
1 | Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. |
2 | Salimian S, Zadhoush A, Talebi Z. Interpenetrating organic–inorganic network: a short review on aerogel as a nanoporous filler in epoxy nanocomposite[J]. Material Design & Processing Communications, 2019, 1(6): e107. |
3 | Liu Q Z, Chen J H, Mei T, et al. A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications[J]. Journal of Materials Chemistry A, 2018, 6(8): 3692-3704. |
4 | Qian F, Lan P C, Freyman M C, et al. Ultralight conductive silver nanowire aerogels[J]. Nano Letters, 2017, 17(12): 7171-7176. |
5 | Li C, Ding Y W, Hu B C, et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32(2): e1904331. |
6 | Hayase G, Kanamori K, Abe K, et al. Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9466-9471. |
7 | Alwin S, Sahaya Shajan X. Aerogels: promising nanostructured materials for energy conversion and storage applications[J]. Materials for Renewable and Sustainable Energy, 2020, 9(2): 1-27. |
8 | Hüsing N, Schubert U. Aerogels-airy materials: chemistry, structure, and properties[J]. Angewandte Chemie, 1998, 37(1/2): 22-45. |
9 | Notario B, Pinto J, Rodriguez-Perez M A. Nanoporous polymeric materials: a new class of materials with enhanced properties[J]. Progress in Materials Science, 2016, 78/79: 93-139. |
10 | Pierre A C, Pajonk G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266. |
11 | Ge J, Zhao H Y, Zhu H W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Advanced Materials, 2016, 28(47): 10459-10490. |
12 | Jiang S H, Agarwal S, Greiner A. Low-density open cellular sponges as functional materials[J]. Angewandte Chemie International Edition, 2017, 56(49): 15520-15538. |
13 | Gorgolis G, Galiotis C. Graphene aerogels: a review[J]. 2D Materials, 2017, 4(3): 032001. |
14 | Wang H L, Hsu C Y, Wu K C W, et al. Functional nanostructured materials: aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications[J]. Advanced Powder Technology, 2020, 31(1): 104-120. |
15 | Smith D M, Stein D, Anderson J M, et al. Preparation of low-density xerogels at ambient pressure[J]. Journal of Non-Crystalline Solids, 1995, 186: 104-112. |
16 | Liu N, Zhang S T, Fu R W, et al. Fabrication and structure of carbon aerogel spheres prepared by inverse suspension/emulsion polymerization and ambient pressure drying[J]. Journal of Applied Polymer Science, 2007, 104(5): 2849-2855. |
17 | Stojanovic A, Zhao S Y, Angelica E, et al. Three routes to superinsulating silica aerogel powder[J]. Journal of Sol-Gel Science and Technology, 2019, 90(1): 57-66. |
18 | Rani T S, Subha M C S, Venkata Reddy G, et al. Synthesis of water-glass-based silica aerogel powder via with and without squeezing of hydrogels[J]. Journal of Applied Polymer Science, 2010, 115(3): 1675-1679. |
19 | de Pooter S, Latré S, Desplentere F, et al. Optimized synthesis of ambient pressure dried thermal insulating silica aerogel powder from non-ion exchanged water glass[J]. Journal of Non-Crystalline Solids, 2018, 499: 217-226. |
20 | Liu R Y, Wang J, Du Y, et al. Phase-separation induced synthesis of superhydrophobic silica aerogel powders and granules[J]. Journal of Solid State Chemistry, 2019, 279: 120971. |
21 | Kirchnerova J, Klvana D, Chaouki J. Preparation and characterization of alumina and chromia cryogel-based catalysts[J]. Applied Catalysis A: General, 2000, 196(2): 191-198. |
22 | Bhagat S D, Kim Y H, Moon M J, et al. A cost-effective and fast synthesis of nanoporous SiO2 aerogel powders using water-glass via ambient pressure drying route[J]. Solid State Sciences, 2007, 9(7): 628-635. |
23 | Asare Bediako B B, Zhou P, Rugabirwa B, et al. A switchable hydrophilicity solvent mediated process to prepare fine silica aerogel powder as an excellent flatting agent[J]. Advanced Powder Technology, 2019, 30(3): 565-571. |
24 | Salimian S, Zadhoush A, Talebi Z, et al. Silica aerogel–epoxy nanocomposites: understanding epoxy reinforcement in terms of aerogel surface chemistry and epoxy–silica interface compatibility[J]. ACS Applied Nano Materials, 2018, 1(8): 4179-4189. |
25 | Kim Y N, Shao G N, Jeon S J, et al. Sol–gel synthesis of sodium silicate and titanium oxychloride based TiO2–SiO2 aerogels and their photocatalytic property under UV irradiation[J]. Chemical Engineering Journal, 2013, 231: 502-511. |
26 | 于照亮, 彭文联, 刘清海, 等. 碳气凝胶超细粉体的可控制备技术[J]. 中国粉体技术, 2021, 27(2): 17-21. |
Yu Z L, Peng W L, Liu Q H, et al. Controllable preparation techniche of carbon aerogel ultrafine powder[J]. China Powder Science and Technology, 2021, 27(2): 17-21. | |
27 | 闫红梅, 王朝阳, 唐永建, 等. 制备条件对气凝胶粉末粒径的影响[J]. 强激光与粒子束, 2006, 18(6): 1027-1030. |
Yan H M, Wang C Y, Tang Y J, et al. Influence of preparation factors on the size of aerogel powder[J]. High Power Laser and Particle Beams, 2006, 18(6): 1027-1030. | |
28 | 李轩科, 刘朗, 刘秀然, 等. 二元炭质-二氧化硅干凝胶和气凝胶前体的制备[J]. 无机材料学报, 2001, 16(1): 134-138. |
Li X K, Liu L, Liu X R, et al. Preparation of binary carbonaceous-silica xerogel and aerogel precursors[J]. Journal of Inorganic Materials, 2001, 16(1): 134-138. | |
29 | 曹伟娜, 安彦飞, 严亚如, 等. PA66–气凝胶复合粉体制备及性能[J]. 工程塑料应用, 2020, 48(5): 23-28. |
Cao W N, An Y F, Yan Y R, et al. Preparation and properties of PA66–aerogel composite powders[J]. Engineering Plastics Application, 2020, 48(5): 23-28. | |
30 | Tanner D, Fitzgerald J A, Phillips B R. The Kevlar story—an advanced materials case study[J]. Angewandte Chemie International Edition in English, 1989, 28(5): 649-654. |
31 | Singh T J, Samanta S. Characterization of Kevlar fiber and its composites: a review[J]. Materials Today: Proceedings, 2015, 2(4/5): 1381-1387. |
32 | Takayanagi M, Katayose T. N-substituted poly(p-phenylene terephthalamide)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19(5): 1133-1145. |
33 | Yang M, Cao K, Sui L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954. |
34 | Yang B, Wang L, Zhang M Y, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897. |
35 | Ma Z, Kang S, Ma J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7): 8368-8382. |
36 | Zhu J, Yang M, Emre A, et al. Branched aramid nanofibers[J]. Angewandte Chemie, 2017, 56(39): 11744-11748. |
37 | Yang B, Wang L, Zhang M Y, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020, 30(22): 2000186. |
38 | Williams J C, Nguyen B N, McCorkle L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1801-1809. |
39 | Wang L, Zhang M, Yang B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647. |
40 | Hu P, Lyu J, Fu C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688-697. |
41 | Lyu J, Liu Z, Wu X, et al. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245. |
42 | Xie C, He L, Shi Y, et al. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7811-7824. |
43 | Xie C, Liu S, Zhang Q, et al. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method[J]. ACS Nano, 2021, 15(6): 10000-10009. |
44 | Yan H C, Li J L, Tian W T, et al. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers[J]. RSC Advances, 2016, 6(32): 26599-26605. |
45 | Xie C J, Guo Z X, Qiu T, et al. Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel[J]. Advanced Materials, 2021: 2101280. |
46 | Rao Y, Waddon A J, Farris R J. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers[J]. Polymer, 2001, 42(13): 5925-5935. |
47 | Nie C X, Peng Z H, Yang Y, et al. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification[J]. Journal of Hazardous Materials, 2016, 318: 255-265. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[8] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[9] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[10] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[11] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[14] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[15] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||