CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 402-410.DOI: 10.11949/0438-1157.20211298
• Energy and environmental engineering • Previous Articles Next Articles
Zhaoxi ZHANG(),Mei ZHONG(),Jian LI, YALKUN·Tursun
Received:
2021-09-07
Revised:
2021-10-26
Online:
2022-01-18
Published:
2022-01-05
Contact:
Mei ZHONG
通讯作者:
钟梅
作者简介:
张照曦(1993—),男,硕士研究生,基金资助:
CLC Number:
Zhaoxi ZHANG,Mei ZHONG,Jian LI, YALKUN·Tursun. Effect of modified montmorillonite on the pyrolysis behavior of Xinjiang Hefeng coal[J]. CIESC Journal, 2022, 73(1): 402-410.
张照曦,钟梅,李建,亚力昆江?吐尔逊. 改性蒙脱土对新疆和丰煤热解行为的影响[J]. 化工学报, 2022, 73(1): 402-410.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass,daf) | |||||||
---|---|---|---|---|---|---|---|---|---|
Ad | Vdaf | FCdaf① | C | H | O① | N | S | ||
raw coal | 22.83 | 47.47 | 52.53 | 72.06 | 5.64 | 19.07 | 3.00 | 0.23 | |
DC | 1.10 | 44.98 | 55.02 | 61.17 | 4.93 | 30.86 | 2.83 | 0.21 |
Table 1 Analysis of coal samples
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass,daf) | |||||||
---|---|---|---|---|---|---|---|---|---|
Ad | Vdaf | FCdaf① | C | H | O① | N | S | ||
raw coal | 22.83 | 47.47 | 52.53 | 72.06 | 5.64 | 19.07 | 3.00 | 0.23 | |
DC | 1.10 | 44.98 | 55.02 | 61.17 | 4.93 | 30.86 | 2.83 | 0.21 |
Sample | BET surface area /(m2/g) | Pore volume / (cm3/g) | Average pore size /nm |
---|---|---|---|
RM | 55 | 0.09 | 7.73 |
AM | 113 | 0.17 | 3.02 |
8ZrAM | 80 | 0.14 | 8.04 |
16ZrAM | 81 | 0.13 | 8.12 |
24ZrAM | 93 | 0.12 | 6.58 |
32ZrAM | 100 | 0.12 | 6.14 |
Table 2 Pore texture properties of the catalysts
Sample | BET surface area /(m2/g) | Pore volume / (cm3/g) | Average pore size /nm |
---|---|---|---|
RM | 55 | 0.09 | 7.73 |
AM | 113 | 0.17 | 3.02 |
8ZrAM | 80 | 0.14 | 8.04 |
16ZrAM | 81 | 0.13 | 8.12 |
24ZrAM | 93 | 0.12 | 6.58 |
32ZrAM | 100 | 0.12 | 6.14 |
Components | Relative content/% | |
---|---|---|
DC | 24ZrAM | |
aliphatic hydrocarbons | 52.71 | 52.01 |
b.p. above 300℃ | 40.74 | 31.74 |
aromatic hydrocarbons | 35.10 | 39.73 |
benzenes | 5.98 | 6.19 |
phenols | 18.27 | 22.74 |
naphthalenes | 8.65 | 8.79 |
indenes | 2.20 | 2.01 |
other heteroatom compounds beyond phenol derivatives | 12.19 | 9.26 |
Table 3 Composition analysis of tar
Components | Relative content/% | |
---|---|---|
DC | 24ZrAM | |
aliphatic hydrocarbons | 52.71 | 52.01 |
b.p. above 300℃ | 40.74 | 31.74 |
aromatic hydrocarbons | 35.10 | 39.73 |
benzenes | 5.98 | 6.19 |
phenols | 18.27 | 22.74 |
naphthalenes | 8.65 | 8.79 |
indenes | 2.20 | 2.01 |
other heteroatom compounds beyond phenol derivatives | 12.19 | 9.26 |
1 | 孙海勇, 杨芊, 樊金璐. 新疆煤炭及煤化工产业发展现状与趋势分析[J]. 煤炭经济研究, 2020, 40(2): 57-61. |
Sun H Y, Yang Q, Fan J L. Development status and trend analysis of Xinjiang coal and coal chemical industry[J]. Coal Economic Research, 2020, 40(2): 57-61. | |
2 | 赵鹏. 新疆淖毛湖煤直接加氢液化特性的研究[J]. 煤炭科学技术, 2019, 47(7): 244-248. |
Zhao P. Study on direct hydrogenation liquefaction characteristics of Naomaohu coal in Xinjiang[J]. Coal Science and Technology, 2019, 47(7): 244-248. | |
3 | 邹达, 白翔, 李显, 等. 新疆和丰煤分段热解过程中产物组成的演变规律[J]. 煤炭学报, 2018, 43(3): 846-854. |
Zou D, Bai X, Li X, et al. Composition and structure evolution characteristics of product from segmenting pyrolysis of Xinjiang Hefeng coal[J]. Journal of China Coal Society, 2018, 43(3): 846-854. | |
4 | He L, Hui H L, Li S G, et al. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018, 216: 227-232. |
5 | Wang M Y, Jin L J, Li Y, et al. In situ catalytic upgrading of coal pyrolysis tar over carbon-based catalysts coupled with CO2 reforming of methane[J]. Energy & Fuels, 2017, 31(9): 9356-9362. |
6 | Zhang L, Shu H, Jia Y, et al. Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19280-19290. |
7 | 王宁梓, 徐祥, 薛晓勇, 等. 煤加氢热解及热解焦气化特性试验研究[J]. 煤炭科学技术, 2017, 45(1): 214-220. |
Wang N Z, Xu X, Xue X Y, et al. Experimental study of coal pyrolysis in hydrogen atmosphere and coal char gasification characters[J]. Coal Science and Technology, 2017, 45(1): 214-220. | |
8 | Feng J, Xue X Y, Li X H, et al. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Processing Technology, 2015, 130: 96-100. |
9 | Zhang H Y, Xiao R, Jin B S, et al. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J]. Bioresource Technology, 2013, 140: 256-262. |
10 | Mohamed B A, Ellis N, Kim C S, et al. Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures[J]. Applied Catalysis B: Environmental, 2019, 253: 226-234. |
11 | 陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638. |
Chen Y, Ji H B. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638. | |
12 | 周军, 吴雷, 周晶晶, 等. 煤催化微波热解技术及其碳基吸波催化剂研究进展[J]. 化工进展, 2019, 38(9): 4060-4074. |
Zhou J, Wu L, Zhou J J, et al. Advances in coal catalytic microwave pyrolysis and its carbon-based absorbing microwave catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4060-4074. | |
13 | 刘壮, 田宜水, 胡二峰, 等. 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(1): 50-59. |
Liu Z, Tian Y S, Hu E F, et al. Research progress on influencing factors and technology of low-rank coal pyrolysis[J]. Clean Coal Technology, 2021, 27(1): 50-59. | |
14 | Wang M Y, Jin L J, Zhao H B, et al. In-situ catalytic upgrading of coal pyrolysis tar over activated carbon supported nickel in CO2 reforming of methane[J]. Fuel, 2019, 250: 203-210. |
15 | Jin L J, Zhou X, He X F, et al. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel, 2013, 114: 187-190. |
16 | Di M N, Wang M Y, Jin L J, et al. In-situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon based catalyst[J]. Fuel Processing Technology, 2020, 209: 106551. |
17 | Wang P F, Jin L J, Liu J H, et al. Isotope analysis for understanding the tar formation in the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy & Fuels, 2010, 24(8): 4402-4407. |
18 | Sonnemans M H W, Den Heijer C, Crocker M. Studies on the acidity of mordenite and ZSM 5.2. Loss of Broensted acidity by dehydroxylation and dealumination[J]. The Journal of Physical Chemistry, 1993, 97(2): 440-445. |
19 | Galadima A, Muraza O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review[J]. Energy Conversion and Management, 2015, 105: 338-354. |
20 | 仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. | |
21 | Yang Z, Cao J P, Ren X Y, et al. Preparation of hierarchical HZSM-5 based sulfated zirconium solid acid catalyst for catalytic upgrading of pyrolysis vapors from lignite pyrolysis[J]. Fuel, 2019, 237: 1079-1085. |
22 | Ren X Y, Cao J P, Zhao X Y, et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel, 2018, 218: 33-40. |
23 | 钟梅, 赵渊, 李显, 等. K+、 Ca2+和Fe3+对和丰煤热解产物分布、结构及品质的影响[J]. 燃料化学学报, 2018, 46(9): 1044-1054. |
Zhong M, Zhao Y, Li X, et al. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1044-1054. | |
24 | Kim S K, Park C Y, Park J Y, et al. The kinetic study of catalytic low-rank coal gasification under CO2 atmosphere using MVRM[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 356-361. |
25 | Chen X, Chen Y Q, Yang H P, et al. Fast pyrolysis of cotton stalk biomass using calcium oxide[J]. Bioresource Technology, 2017, 233: 15-20. |
26 | 郭延红, 伏瑜. Fe2O3/CaO复合催化剂对低阶煤催化热解行为的影响[J]. 煤炭科学技术, 2017, 45(4): 181-187. |
Guo Y H, Fu Y. Effect of hybrid catalyst Fe2O3/CaO on pyrolysis behaviours of low rank coals[J]. Coal Science and Technology, 2017, 45(4): 181-187. | |
27 | Meng F Y, Gupta S, Yu J L, et al. Effects of kaolinite addition on the thermoplastic behaviour of coking coal during low temperature pyrolysis[J]. Fuel Processing Technology, 2017, 167: 502-510. |
28 | Rutkowski P. Pyrolytic behavior of cellulose in presence of montmorillonite K10 as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 115-122. |
29 | Roets L, Bunt J R, Neomagus H W J P, et al. The effect of added minerals on the pyrolysis products derived from a vitrinite-rich demineralised South African coal[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 41-49. |
30 | Zhong M, Zou D, Xu Y B, et al. Effect of kaolinites modified with Zr and transition metals on the pyrolysis behaviors of low-rank coal and its model compound[J]. Journal of the Energy Institute, 2021, 95: 41-51. |
31 | Hao Q Q, Wang G W, Liu Z T, et al. Insights into structural and chemical properties of activated montmorillonite for Fischer-Tropsch synthesis over supported cobalt catalysts[M]//Nanocatalysis for Fuels and Chemicals. Washington, DC: American Chemical Society, 2012: 167-193. |
32 | 石磊. 煤共价键结构在热解过程中的阶段解离研究[D]. 北京: 北京化工大学, 2014. |
Shi L. Study on the cleavage of covalent bonds in coal pyrolysis in consecutive temperature ranges[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
33 | 管秀丽. 元素掺杂蒙脱石固体酸的制备、表征及其芳烃开环裂解性能[D]. 马鞍山: 安徽工业大学, 2016. |
Guan X L. Preparation, characterization of solid acid of montmorillonite doped with Zr and Ti and their properties of aromatic ring opening and cracking[D]. Ma'anshan: Anhui University of Technology, 2016. | |
34 | Singh A K, Nakate U T. Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia[J]. The Scientific World Journal, 2014, 2014: 1-7. |
35 | Hua W M, Xia Y D, Yue Y H, et al. Promoting effect of Al on SO42-/MxOy (M= Zr, Ti, Fe) catalysts[J]. Journal of Catalysis, 2000, 196(1): 104-114. |
36 | Sarma G K, Sen Gupta S, Bhattacharyya K G. RETRACTED: Adsorption of crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension[J]. Journal of Environmental Management, 2016, 171: 1-10. |
37 | Zhao H, Zhou C H, Wu L M, et al. Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated montmorillonite catalysts[J]. Applied Clay Science, 2013, 74: 154-162. |
38 | Zeynizadeh B, Rahmani S, Ilkhanizadeh S. Strongly proton exchanged montmorillonite K10 (H+-Mont) as a solid acid catalyst for highly efficient and environmental benign synthesis of biscoumarins via tandem Knoevenagel-Michael reaction[J]. Polyhedron, 2019, 168: 48-56. |
39 | Bineesh K V, Kim S Y, Jermy B R, et al. Synthesis, characterization and catalytic performance of vanadia-doped delaminated zirconia-pillared montmorillonite clay for the selective catalytic oxidation of hydrogen sulfide[J]. Journal of Molecular Catalysis A: Chemical, 2009, 308(1/2): 150-158. |
40 | 王会丽, 尹建军, 邵帅, 等. 片状形貌Zr-ZSM-5分子筛的合成与表征[J]. 材料导报, 2016, 30(S2): 295-299. |
Wang H L, Yin J J, Shao S, et al. Synthesis and characterization of sheet-like Zr-ZSM-5 zeolite[J]. Materials Review, 2016, 30(S2): 295-299. | |
41 | Zhang Z Z, Chang H, Gao T, et al. Catalytic upgrading of coal pyrolysis volatiles over metal-loaded HZSM-5 catalysts in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 31-39. |
42 | Liu Y, Guan Y J, Zhang K. Toward understanding the reactivity and catalytic mechanism of coal pyrolysis with metal chloride modification[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 196-202. |
43 | Li P, Li D, Yang H P, et al. Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors[J]. Energy & Fuels, 2016, 30(4): 3004-3013. |
44 | Ren X Y, Cao J P, Zhao X Y, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
45 | Wan Khalit W N A, Marliza T S, Taufiq-Yap Y H. Synthesis and characterizations of nickel supported on activated charcoal and its application for green fuel production[J]. Materials Science Forum, 2020, 1010: 424-430. |
46 | Zhong M, Zhai J R, Xu Y B, et al. Catalytic cracking of coal-tar model compounds over ZrO2/Al2O3 and Ni-Ce/Al2O3 catalysts under steam atmosphere[J]. Fuel, 2020, 263: 116763. |
47 | Le J W, Liu P, Liu D C, et al. Effect of catalysts on the yields of light components and phenols derived from Shenmu coal low temperature pyrolysis[J]. Energy & Fuels, 2017, 31(7): 7033-7041. |
48 | Zou D, Jin L J, Zhong M, et al. Catalytic performance of modified kaolinite in pyrolysis of benzyl phenyl ether: a model compound of low rank coal[J]. Journal of the Energy Institute, 2020, 93(6): 2314-2324. |
[1] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[2] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[3] | Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics [J]. CIESC Journal, 2022, 73(2): 699-711. |
[4] | Meijia LIU,Gang WANG,Zhongdong ZHANG,Shunnian XU,Hao WANG,Falu DANG,Shengbao HE. Analysis of reaction performance of high efficient pyrolysis of C5 alkanes to light olefins [J]. CIESC Journal, 2021, 72(10): 5172-5182. |
[5] | Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on thermochemical conversion of biomass to enhance quality and catalyst [J]. CIESC Journal, 2020, 71(8): 3416-3427. |
[6] | QIAN Le,JIANG Liqun,YUE Yuanmao,ZHAO Zengli. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone [J]. CIESC Journal, 2020, 71(12): 5376-5387. |
[7] | Jianrong ZHAI, Mei ZHONG, Fengyun MA, Haoquan HU. Effect of steam atmosphere on cracking behavior and carbon deposition of coal tar model compounds [J]. CIESC Journal, 2019, 70(8): 2898-2908. |
[8] | Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis [J]. CIESC Journal, 2019, 70(4): 1429-1435. |
[9] | LIN Bingcheng, WANG Jun, HUANG Qunxing, CHI Yong. Products obtained from catalytic pyrolysis of oily sludge over ZSM-5 zeolite [J]. CIESC Journal, 2018, 69(6): 2681-2687. |
[10] | TANG Songshan, PAN Zeyou, ZHANG Changsen, WANG Dengtai, XUE Xiangfei, CAO Yunfeng, LIU Yonggang, ZHANG Ruiqin. Deactivation analysis of catalyst for modified HZSM-5 catalytic lignin pyrolysis [J]. CIESC Journal, 2017, 68(12): 4739-4749. |
[11] | ZHANG Yanmin, ZOU Da, ZHAO Yuan, ZHONG Mei, MA Fengyun. Effect of bimetallic catalysts on cracking behavior of coal tar model compounds [J]. CIESC Journal, 2017, 68(10): 3805-3815. |
[12] | WANG Ping, ZHAO Hui, YANG Chaohe. Process control oriented dynamic modeling for two-stage-riser catalytic pyrolysis of heavy oil [J]. CIESC Journal, 2016, 67(8): 3499-3506. |
[13] | WANG Ping, ZHAO Hui, YANG Chaohe. Self-optimizing control based on multi-objective optimization for heavy oil catalytic pyrolysis in two-stage riser [J]. CIESC Journal, 2016, 67(8): 3491-3498. |
[14] | WANG Yun, SHAO Shanshan, ZHANG Huiyan, XIAO Rui. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons [J]. CIESC Journal, 2015, 66(8): 3022-3028. |
[15] | XIAO Shen, SHEN Laihong, NIU Xin, GU Haiming, GE Huijun. NOx release in chemical looping combustion of N-containing model compounds [J]. CIESC Journal, 2015, 66(11): 4588-4596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||