CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3416-3427.DOI: 10.11949/0438-1157.20200191
• Reviews and monographs • Previous Articles Next Articles
Li ZHANG1,2(),Zonglu YAO2,Lixin ZHAO1,2(),Zhihe LI1,Weiming YI1,Peng FU1,Chao YUAN3
Received:
2020-02-27
Revised:
2020-03-26
Online:
2020-08-05
Published:
2020-08-05
Contact:
Lixin ZHAO
仉利1,2(),姚宗路2,赵立欣1,2(),李志合1,易维明1,付鹏1,袁超3
通讯作者:
赵立欣
作者简介:
仉利(1988—),女,博士研究生,基金资助:
CLC Number:
Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427.
仉利, 姚宗路, 赵立欣, 李志合, 易维明, 付鹏, 袁超. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427.
Add to citation manager EndNote|Ris|BibTeX
转化路径 | 转化条件 | 转化产物 | 产物利用价值 | 转化特点 | 文献 |
---|---|---|---|---|---|
燃烧 | 富氧、着火点 | 能量、CO2、H2O等 | 热力、电力等 | 能源利用率低,环境污染大 | [ |
催化热解 | 缺氧或少氧 高温(300~1500℃) | 热解气、生物油、生物炭 | 热力、电力、活性炭、燃气、 液体燃料、化学品等 | 设备要求低,转化效率高,技术成熟 | [ |
水热催化 | 缺氧或少氧 高压(5~25 MPa) 高温(200~600℃) | 热解气、生物油、生物炭 | 热力、电力、活性炭、燃气、 液体燃料、化学品等 | (1)水作为溶剂或催化反应介质,绿色环保无污染; (2)水热催化传质传热速率较快,反应迅速,节约能量; (3)生物质原材料无须脱水,经定向反应后产物收率较高 | [ |
化学链转化 | 高温(700~1000℃)氧载体 | 能量、CO2、H2O、合成 气等 | 热力、电力、干冰、燃气等 | (1)燃料反应器中产物为CO2和水蒸气,可通过冷凝实现CO2内分离; (2)空气反应器中温度较低避免了NOx的生成,降低了环境污染; (3)分步转化过程实现了能量梯级利用,提高了能量的利用率 | [ |
Table 1 Path and characteristics of biomass thermochemical conversion
转化路径 | 转化条件 | 转化产物 | 产物利用价值 | 转化特点 | 文献 |
---|---|---|---|---|---|
燃烧 | 富氧、着火点 | 能量、CO2、H2O等 | 热力、电力等 | 能源利用率低,环境污染大 | [ |
催化热解 | 缺氧或少氧 高温(300~1500℃) | 热解气、生物油、生物炭 | 热力、电力、活性炭、燃气、 液体燃料、化学品等 | 设备要求低,转化效率高,技术成熟 | [ |
水热催化 | 缺氧或少氧 高压(5~25 MPa) 高温(200~600℃) | 热解气、生物油、生物炭 | 热力、电力、活性炭、燃气、 液体燃料、化学品等 | (1)水作为溶剂或催化反应介质,绿色环保无污染; (2)水热催化传质传热速率较快,反应迅速,节约能量; (3)生物质原材料无须脱水,经定向反应后产物收率较高 | [ |
化学链转化 | 高温(700~1000℃)氧载体 | 能量、CO2、H2O、合成 气等 | 热力、电力、干冰、燃气等 | (1)燃料反应器中产物为CO2和水蒸气,可通过冷凝实现CO2内分离; (2)空气反应器中温度较低避免了NOx的生成,降低了环境污染; (3)分步转化过程实现了能量梯级利用,提高了能量的利用率 | [ |
1 | Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals[J]. Biotechnology Advances, 2019, 37(4): 589-597. |
2 | Mitsos A, Asprion N, Floudas C A, et al. Challenges in process optimization for new feedstocks and energy sources[J]. Computers & Chemical Engineering, 2018, 113: 209-221. |
3 | Mohapatra S, Mishra C, Behera S S, et al. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 1007-1032. |
4 | Balat M. Biomass energy and biochemical conversion processing for fuels and chemicals[J]. Energy Sources, Part A, 2006, 28(6): 517-525. |
5 | Azizi K, Moraveji M K, Najafabadi H A. A review on bio-fuel production from microalgal biomass by using pyrolysis method[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3046-3059. |
6 | Chen W H, Lin B J, Huang M Y, et al. Thermochemical conversion of microalgal biomass into biofuels: a review[J]. Bioresource Technology, 2015, 184: 314-327. |
7 | Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. |
8 | Sansaniwal S K, Pal K, Rosen M A, et al. Recent advances in the development of biomass gasification technology: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 363-384. |
9 | Du L, Shao Y, Sun J, et al. Electrocatalytic valorisation of biomass derived chemicals[J]. Catalysis Science & Technology, 2018, 8(13): 3216-3232. |
10 | Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for biofuel generation: electrochemical conversion of levulinic acid to octane[J]. Energy & Environmental Science, 2012, 5(1): 5231-5235. |
11 | Isahak W N R W, Hisham M W M, Yarmo M A, et al. A review on bio-oil production from biomass by using pyrolysis method[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5910-5923. |
12 | Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. |
13 | Ong H C, Chen W H, Farooq A, et al. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109266. |
14 | Adanez J, Abad A, Garcia-Labiano F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
15 | Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2262-2289. |
16 | Abuelnuor A A A, Wahid M A, Hosseini S E, et al. Characteristics of biomass in flameless combustion: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 363-370. |
17 | Goyal H B, Seal D, Saxena R C. Bio-fuels from thermochemical conversion of renewable resources: a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 504-517. |
18 | Hu X, Gholizadeh M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
19 | Pavlovic I, Knez Z, Skerget M. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research[J]. Journal of Agricultural and Food Chemistry, 2013, 61(34): 8003-8025. |
20 | Tekin K, Karagöz S, Bektaş S. A review of hydrothermal biomass processing[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 673-687. |
21 | Kobayashi N, Fan L S. Biomass direct chemical looping process: a perspective[J]. Biomass and Bioenergy, 2011, 35(3): 1252-1262. |
22 | Chiu P C, Ku Y. Chemical looping process—a novel technology for inherent CO2 capture[J]. Aerosol Air Qual. Res., 2012, 12: 1421-1432. |
23 | Wang S, Dai G, Yang H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
24 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34 (Ⅰ): Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 458-464. |
25 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34 (Ⅱ): Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309. |
26 | Wang K, Kim K H, Brown R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
27 | Shen D K, Gu S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504. |
28 | Werner K, Pommer L, Broström M. Thermal decomposition of hemicelluloses[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 130-137. |
29 | Wang W L, Ren X Y, Li L F, et al. Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin[J]. Fuel Processing Technology, 2015, 134: 345-351. |
30 | Wang W L, Ren X Y, Chang J M, et al. Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides[J]. Fuel Processing Technology, 2015, 138: 605-611. |
31 | Wang S, Li Z, Bai X, et al. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis[J]. Bioresource Technology, 2018, 268: 323-331. |
32 | Peng C, Zhang G, Yue J, et al. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
33 | Mochizuki T, Atong D, Chen S Y, et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications, 2013, 36: 1-4. |
34 | 李文斌, 郑云武, 李水荣, 等. 玉米芯热解催化转化制备呋喃类化合物工艺优化[J]. 农业工程学报, 2019, 35(17): 256-262. |
Li W B, Zheng Y W, Li S R, et al. Optimization of process for preparation of furan compounds by pyrolysis catalytic conversion of corncob[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 256-262. | |
35 | Li R, Zhong Z P, Jin B S, et al. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production[J]. Bioresource Technology, 2012, 119: 324-330. |
36 | Lin Y, Zhang C, Zhang M, et al. Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor[J]. Energy & Fuels, 2010, 24(10): 5686-5695. |
37 | Lu Q, Xiong W M, Li W Z, et al. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds[J]. Bioresource Technology, 2009, 100(20): 4871-4876. |
38 | Ammendola P, Lisi L, Piriou B, et al. Rh-perovskite catalysts for conversion of tar from biomass pyrolysis[J]. Chemical Engineering Journal, 2009, 154(1/2/3): 361-368. |
39 | Paysepar H, Rao K T V, Yuan Z, et al. Zeolite catalysts screening for production of phenolic bio-oils with high contents of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis[J]. Fuel Processing Technology, 2018, 178: 362-370. |
40 | Zhao Y, Deng L, Liao B, et al. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy & Fuels, 2010, 24(10): 5735-5740. |
41 | Tang S, Zhang C, Xue X, et al. Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 86-95. |
42 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J].化工学报, 2020, 71(4): 1637-1645. |
Fang S Q, Shi C, Li P, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
43 | Chen H, Cheng H, Zhou F, et al. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 76-84. |
44 | Garg R, Anand N, Kumar D. Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization[J]. Renewable Energy, 2016, 96: 167-171. |
45 | 李攀, 杨海平, 王贤华, 等. 不同酸处理条件下生物质热解产物特性分析[J].太阳能学报, 2015, 36(9): 2065-2070. |
Li P, Yang H P, Wang X H, et al. The product characteristic of biomass pyrolysis based on different acid pretreatments THE[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2065-2070. | |
46 | Zhang B, Tan G, Zhong Z, et al. Microwave-assisted catalytic fast pyrolysis of spent edible mushroom substrate for bio-oil production using surface modified zeolite catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 92-98. |
47 | Liu S, Zhang Y, Fan L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196: 261-268. |
48 | Zhang B, Zhong Z, Zhang J, et al. Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 147-153. |
49 | Lee H W, Kim Y M, Lee B, et al. Catalytic copyrolysis of torrefied cork oak and high density polyethylene over a mesoporous HY catalyst[J]. Catalysis Today, 2018, 307: 301-307. |
50 | 张会岩, 肖睿, Huber George W. 生物质和废弃油脂流化床共催化热解实验研究[J].工程热物理学报, 2013, 34(4): 771-774. |
Zhang H Y, Xiao R, George W H. Experimental research on co-catalytic pyrolysis of biomass and waste oil in a fluidized bed[J]. Journal of Engineering Thermophysics, 2013, 34(4): 771-774. | |
51 | Ratnasari D K, Yang W, Jönsson P G. Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 454-464. |
52 | Wang S, Li Z, Bai X, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. |
53 | Barbier J, Charon N, Dupassieux N, et al. Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways[J]. Biomass and Bioenergy, 2012, 46: 479-491. |
54 | Singh R, Balagurumurthy B, Prakash A, et al. Catalytic hydrothermal liquefaction of water hyacinth[J]. Bioresource Technology, 2015, 178: 157-165. |
55 | Besse X, Schuurman Y, Guilhaume N. Hydrothermal conversion of lignin model compound eugenol[J]. Catalysis Today, 2015, 258: 270-275. |
56 | Miao G, Zan Y, Sun Y, et al. Mn-promoted hydrogenation of microalgae (Chlorococcum sp.) to 1, 2-propanediol and ethylene glycol over Ni-ZnO catalysts[J]. Applied Catalysis A: General, 2018, 565: 34-45. |
57 | Yang W, Li X, Liu S, et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts[J]. Energy Conversion and Management, 2014, 87: 938-945. |
58 | Peng C, Zhang G, Han J, et al. Hydrothermal conversion of lignin and black liquor for phenolics with the aids of alkali and hydrogen donor[J]. Carbon Resources Conversion, 2019, 2(2): 141-150. |
59 | Kong L, Li G, Wang H, et al. Hydrothermal catalytic conversion of biomass for lactic acid production[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008, 83(3): 383-388. |
60 | Shu R, Lin B, Wang C, et al. Hydrogenolysis of dealkaline lignin catalyzed by noble metal cooperated with metal chloride[J]. Energy Procedia, 2019, 158: 406-411. |
61 | Tekin K, Karagöz S, Bektaş S. Hydrothermal liquefaction of beech wood using a natural calcium borate mineral[J]. The Journal of Supercritical Fluids, 2012, 72: 134-139. |
62 | Wang J J, Tan Z C, Zhu C C, et al. One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite[J]. Green Chemistry, 2016, 18(2): 452-460. |
63 | Valdez P J, Nelson M C, Faeth J L, et al. Hydrothermal liquefaction of bacteria and yeast monocultures[J]. Energy & Fuels, 2014, 28(1): 67-75. |
64 | Cantero D A, Bermejo M D, Cocero M J. Kinetic analysis of cellulose depolymerization reactions in near critical water[J]. The Journal of Supercritical Fluids, 2013, 75: 48-57. |
65 | Dong W, Shen Z, Peng B, et al. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst[J]. Scientific Reports, 2016, 6: 26713-26720. |
66 | Chen Y, Wang F, Yang Z. Preparation and upgrading of hydrocarbon oil from deoxy-liquefaction of oil crop[J]. Bioresource Technology, 2013, 146: 472-477. |
67 | Xiong H, Schwartz T J, Andersen N I, et al. Graphitic‐carbon layers on oxides: toward stable heterogeneous catalysts for biomass conversion reactions[J]. Angewandte Chemie International Edition, 2015, 54(27): 7939-7943. |
68 | Liu X, Lan G, Su P, et al. Highly stable Ru nanoparticles incorporated in mesoporous carbon catalysts for production of γ-valerolactone[J]. Catalysis Today, 2020, 351: 75-82. |
69 | 郝建刚, 吴家桦, 王雷, 等. 基于Fe基载氧体的生物质化学链燃烧试验研究[J].锅炉技术, 2010, 41(2): 65-70. |
Hao J G, Wu J H, Wang L, et al. Experiments on chemical looping combustion of biomass with a Fe2O3 based oxygen carrier[J].Boiler Technology, 2010, 41(2): 65-70. | |
70 | Mendiara T, Abad A, De Diego L F, et al. Biomass combustion in a CLC system using an iron ore as an oxygen carrier[J]. International Journal of Greenhouse Gas Control, 2013, 19: 322-330. |
71 | Adánez-Rubio I, Pérez-Astray A, Mendiara T, et al. Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide[J]. Fuel Processing Technology, 2018, 172: 179-186. |
72 | Udomsirichakorn J, Salam P A. Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 565-579. |
73 | 陈智豪, 廖艳芬, 莫菲, 等. MnFeO3和 MnFe2O4氧载体在稻草化学链气化中的应用[J]. 化工学报, 2019, 70(12): 4835-4846. |
Chen Z H, Liao Y F, Mo F, et al. Application of MnFeO3 and MnFe2O4 as oxygen carriers for straw chemical looping gasification[J]. CIESC Journal, 2019, 70(12): 4835-4846. | |
74 | Hu Q, Shen Y, Chew J W, et al. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chemical Engineering Journal, 2020, 379: 122346. |
75 | Wu Y, Liao Y, Liu G, et al. Reactivity investigation on biomass chemical looping conversion for syngas production[J]. Journal of the Energy Institute, 2019, 92(4): 1137-1148. |
76 | Wei G, Huang J, Fan Y, et al. Chemical looping reforming of biomass based pyrolysis gas coupling with chemical looping hydrogen by using Fe/Ni/Al oxygen carriers derived from LDH precursors[J]. Energy Conversion and Management, 2019, 179: 304-313. |
77 | Chen J, Zhao K, Zhao Z, et al. Identifying the roles of MFe2O4 (M= Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4674-4687. |
78 | Zhao H, Guo L, Zou X. Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier[J]. Applied Energy, 2015, 157: 408-415. |
79 | Guo L, Zhao H, Zheng C. Synthesis gas generation by chemical-looping reforming of biomass with natural copper ore as oxygen carrier[J]. Waste and Biomass Valorization, 2015, 6(1): 81-89. |
80 | Huang Z, Deng Z, He F, et al. Reactivity investigation on chemical looping gasification of biomass char using nickel ferrite oxygen carrier[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14458-14470. |
81 | 范峻铭, 洪慧, 金红光. 基于化学链燃烧生物质煤互补的天然气动力联产系统研究[J]. 工程热物理学报, 2017, 38(7): 1466-1471. |
Fan J M, Hong H, Jin H G. System performance of SNG and power polygeneration system with chemical looping combustion driven by hybrid coal and biomass[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1466-1471. | |
82 | Fan J, Hong H, Zhu L, et al. Thermodynamic and environmental evaluation of biomass and coal co-fueled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production[J]. Applied Energy, 2017, 195: 861-876. |
83 | Mehrpooya M, Sharifzadeh M M M, Rajabi M, et al. Design of an integrated process for simultaneous chemical looping hydrogen production and electricity generation with CO2 capture[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8486-8496. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||