CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5376-5387.DOI: 10.11949/0438-1157.20200596
• Reviews and monographs • Previous Articles Next Articles
QIAN Le1,2(),JIANG Liqun1(),YUE Yuanmao1,ZHAO Zengli1
Received:
2020-05-18
Revised:
2020-06-10
Online:
2020-12-05
Published:
2020-12-05
Contact:
JIANG Liqun
通讯作者:
蒋丽群
作者简介:
钱乐(1996—),男,硕士研究生,基金资助:
CLC Number:
QIAN Le,JIANG Liqun,YUE Yuanmao,ZHAO Zengli. Research progress of catalytic pyrolysis of biomass to yield levoglucosenone[J]. CIESC Journal, 2020, 71(12): 5376-5387.
钱乐,蒋丽群,岳元茂,赵增立. 催化热解生物质生成左旋葡聚糖酮的研究进展[J]. 化工学报, 2020, 71(12): 5376-5387.
Add to citation manager EndNote|Ris|BibTeX
反应底物 | 催化剂 | 反应器 | 热解条件 | 产率/%(质量) | 相对含量/% | 文献 |
---|---|---|---|---|---|---|
纤维素 | 磷酸 | CDS Pyroprobe | 500℃ | 34 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 500℃ | 17 | [ | |
玉米芯 | 硫酸 | CDS Pyroprobe | 300℃ | 4.9 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 350℃ | 22.3 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 350℃ | 21.08 | [ | |
纤维素 | Fe3+ | CDS Pyroprobe | 500℃ | 40.7 | [ | |
纤维素 | 磷酸 | 烤箱 | 620 W | 7.65 | [ | |
纤维素 | 磷酸 | 烧瓶与加热套 | 225℃ | 12 | [ | |
木质纤维素 | 磷酸 | CDS Pyroprobe | 375℃ | 29~30 | [ | |
稻壳 | NH4H2PO4 | CDS Pyroprobe | 390℃ | 34.65 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 873 K | 51.0 | [ | |
纤维素 | 磷酸铵 | CDS Pyroprobe | 873 K | 30.9 | [ | |
玉米芯 | 硫酸 | 固定床反应器 | 800 K | 4.5 | [ | |
甘蔗渣 | 硫酸 | 固定床反应器 | 270℃ | 7.58 | [ | |
纤维素 | 蒙脱石K10 | 卧式烤箱 | 350℃ | 2.9 | [ | |
纤维素 | 黏土催化剂 | 微波热解器 | 180℃ | 12.3 | [ | |
杨木 | 固体磷酸 | CDS Pyroprobe | 300℃ | 8.2 | [ | |
纤维素 | 固体磷酸 | 固定床反应器 | 325℃ | 85 | [ | |
纤维素 | 磷酸活性炭 | CDS Pyroprobe | 300℃ | 18.1 | [ | |
纤维素 | 磷酸活性炭 | 固定床反应器 | 300℃ | 14.7 | [ | |
纤维素 | 磷酸铁 | 固定床反应器 | 350℃ | 32.7 | [ | |
纤维素 | 小型热解炉 | 335℃ | 8.14 | [ | ||
纤维素 | CDS Pyroprobe | 400℃ | 60 | [ | ||
纤维素 | CDS Pyroprobe | 300℃ | 15.4 | [ | ||
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 350℃ | 22.0 | [ | |
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 300℃ | 18.1~29.7 | [ | |
纤维素 | [BMMIM]CF3SO3 | 固定床与重整器 | 380℃ | 31.6 | [ | |
纤维素 | [BMMIM]OTf | 固定床与重整器 | 500℃ | 16.6 | [ |
Table 1 Different catalysts for catalytic pyrolysis of biomass to obtain LGO
反应底物 | 催化剂 | 反应器 | 热解条件 | 产率/%(质量) | 相对含量/% | 文献 |
---|---|---|---|---|---|---|
纤维素 | 磷酸 | CDS Pyroprobe | 500℃ | 34 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 500℃ | 17 | [ | |
玉米芯 | 硫酸 | CDS Pyroprobe | 300℃ | 4.9 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 350℃ | 22.3 | [ | |
桦木 | 磷酸 | CDS Pyroprobe | 350℃ | 21.08 | [ | |
纤维素 | Fe3+ | CDS Pyroprobe | 500℃ | 40.7 | [ | |
纤维素 | 磷酸 | 烤箱 | 620 W | 7.65 | [ | |
纤维素 | 磷酸 | 烧瓶与加热套 | 225℃ | 12 | [ | |
木质纤维素 | 磷酸 | CDS Pyroprobe | 375℃ | 29~30 | [ | |
稻壳 | NH4H2PO4 | CDS Pyroprobe | 390℃ | 34.65 | [ | |
纤维素 | 磷酸 | CDS Pyroprobe | 873 K | 51.0 | [ | |
纤维素 | 磷酸铵 | CDS Pyroprobe | 873 K | 30.9 | [ | |
玉米芯 | 硫酸 | 固定床反应器 | 800 K | 4.5 | [ | |
甘蔗渣 | 硫酸 | 固定床反应器 | 270℃ | 7.58 | [ | |
纤维素 | 蒙脱石K10 | 卧式烤箱 | 350℃ | 2.9 | [ | |
纤维素 | 黏土催化剂 | 微波热解器 | 180℃ | 12.3 | [ | |
杨木 | 固体磷酸 | CDS Pyroprobe | 300℃ | 8.2 | [ | |
纤维素 | 固体磷酸 | 固定床反应器 | 325℃ | 85 | [ | |
纤维素 | 磷酸活性炭 | CDS Pyroprobe | 300℃ | 18.1 | [ | |
纤维素 | 磷酸活性炭 | 固定床反应器 | 300℃ | 14.7 | [ | |
纤维素 | 磷酸铁 | 固定床反应器 | 350℃ | 32.7 | [ | |
纤维素 | 小型热解炉 | 335℃ | 8.14 | [ | ||
纤维素 | CDS Pyroprobe | 400℃ | 60 | [ | ||
纤维素 | CDS Pyroprobe | 300℃ | 15.4 | [ | ||
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 350℃ | 22.0 | [ | |
纤维素 | [BMMIM]CF3SO3 | 玻璃管反应器 | 300℃ | 18.1~29.7 | [ | |
纤维素 | [BMMIM]CF3SO3 | 固定床与重整器 | 380℃ | 31.6 | [ | |
纤维素 | [BMMIM]OTf | 固定床与重整器 | 500℃ | 16.6 | [ |
1 | Mazario J, Romero M P, Concepcion P, et al. Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone[J]. Green Chemistry, 2019, 21(17): 4769-4785. |
2 | Nel W P, Cooper C J. Implications of fossil fuel constraints on economic growth and global warming[J]. Energy Policy, 2009, 37(1): 166-180. |
3 | Shafiee S, Topal E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. |
4 | Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends[J]. Energy Sources, 2005, 27(10): 931-940. |
5 | Long H L, Li X B, Wang H, et al. Biomass resources and their bioenergy potential estimation: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 26: 344-352. |
6 | Zhou C H, Xia X, Lin C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11): 5588-5617. |
7 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
8 | Sheldon R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
9 | Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass & Bioenergy, 2012, 38: 68-94. |
10 | Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
11 | Black B A, Michener W E, Ramirez K J, et al. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6815-6827. |
12 | Perkins G, Bhaskar T, Konarova M. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 292-315. |
13 | Taarning E, Osmundsen C M, Yang X B, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energy & Environmental Science, 2011, 4(3): 793-804. |
14 | Carpenter D, Westover T L, Czernik S, et al. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green Chemistry, 2014, 16(2): 384-406. |
15 | Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: Kinetic mechanism of biomass pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2867-2881. |
16 | Halpern Y, Riffer R, Broido A. Levoglucosenone (1, 6-anhydro-3, 4-dideoxy-β-D-pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates[J]. The Journal of Organic Chemistry, 1973, 38(2): 204-209. |
17 | Miftakhov M S, Valeev F A, Gaisina I N, et al. Levoglucosenone-chemical-properties and using in fine organic-synthsis[J]. Uspekhi Khimii, 1994, 63(10): 922-936. |
18 | Ostermeier M, Schobert R. Total synthesis of (+)-chloriolide[J]. Journal of Organic Chemistry, 2014, 79(9): 4038-4042. |
19 | Muller C, Frau M A G Z, Ballinari D, et al. Design, synthesis, and biological evaluation of levoglucosenone-derived Ras activation inhibitors[J]. ChemMedChem, 2009, 4(4): 24-528. |
20 | Sherwood J, De bruyn M, Constantinou A, et al. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents[J]. Chemical Communications, 2014, 50(68): 9650-9652. |
21 | Witczak Z J, Mielguj R. A convenient synthesis of the (+) enantiomer of levoglucosenone and its 5-hydroxymethyl analog[J]. Synlett, 1996, 1: 108-110. |
22 | Allgeier A M, Desilva N, Korovessi E, et al. Preparing 1, 6-hexanediol involves contacting levoglucosenone with hydrogen in the presence of a hydrogenation catalyst comprising palladium, platinum/tungsten, nickel/tungsten, rhodium/rhenium, or mixtures:WO2013101980 A1[P]. 2013. |
23 | Allgeier A M, Desilva N, Korovessi E, et al. Preparing 1, 6-hexanediol comprises contacting levoglucosenone with hydrogen in presence of first hydrogenation catalyst to form product mixture and heating product mixture in the presence of hydrogen and second hydrogenation catalyst: US2013101969 A1[P]. 2013. |
24 | 鲁华, 高伟. 1, 6-己二醇的产业现状及应用[J]. 精细与专用化学品, 2013, 21(7): 9-11. |
Lu H, Gao W. Industry status and application of 1, 6-hexanediol[J]. Fine and Specialty Chemicals, 2013, 21(7): 9-11. | |
25 | 吕国辉. 1, 6-己二醇国内产业情况及其应用[J]. 河南化工, 2018, 35(8): 12-14. |
Lyu G H. Domestic industrial situation and its application of 1, 6-hexanediol[J]. Henan Chemical Industry, 2018, 35(8): 12-14. | |
26 | Mori M, Chuman T, Kato K, et al. A stereoselective synthesis “natural” (4S, 6S, 7S)-serricornin, the sex pheromone of cigarette bettle, from levoglucosenone[J]. Tetrahedron Letters, 1982, 23(44): 4593-4596. |
27 | Urabe D, Nishikawa T, Isobe M. An efficient total synthesis of optically active tetrodotoxin from levoglucosenone[J]. Chemistry–An Asian Journal, 2006, 1(1/2): 125-135. |
28 | Zhang Z B, Lu Q, Ye X N, et al. Selective production of levoglucosenone from catalytic fast pyrolysis of biomass mechanically mixed with solid phosphoric acid catalysts[J]. BioEnergy Research, 2015, 8(3): 1263-1274. |
29 | Kudo S, Zhou Z W, Yamasaki K, et al. Sulfonate ionic liquid as a stable and active catalyst for levoglucosenone production from saccharides via catalytic pyrolysis[J]. Catalysts, 2013, 3(4): 757-773. |
30 | Ohnishi A, Kato K, Takagi E. Curie-point pyrolysis of cellulose[J]. Polymer Journal, 1975, 7(4): 431-437. |
31 | Dobele G, Dizhbite T, Rossinskaja G, et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1, 6-anhydrosaccharides in high yields[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68/69: 197-211. |
32 | Cao F Z, Xia S P, Yang X W, et al. Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals[J]. Chemical Engineering Journal, 2020, 385: 123809. |
33 | Shafizadeh F, Chin P P S. Pyrolytic production and decomposition of 1,6-anhydro-3,4-dideoxy-beta-D-glycero-hex-3-enopyranos-2-ulose[J]. Carbohydrate Research, 1976, 46(1): 149-154. |
34 | Mettler M S, Mushrif S H, Paulsen A D, et al. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates[J]. Energy & Environmental Science, 2012, 5(1): 5414-5424. |
35 | Dobele G, Rossinskaja G, Telysheva G, et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 307-317. |
36 | Dobele G, Zhurinsh A, Volperts A, et al. Study of levoglucosenone obtained in analytical pyrolysis and screw-type reactor, separation and distillation[J]. Wood Science and Technology, 2020, 54(2): 383-400. |
37 | Dobele G, Rossinskaja G, Dizhbite T, et al. Application of catalysts for obtaining 1, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 401-405. |
38 | Sarotti A M, Spanevello R A, Suarez A G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach[J]. Green Chemistry, 2007, 9(10): 1137-1140. |
39 | Marshall J A. An Improved Preparation of Levoglucosenone from Cellulose[M]. Proquest, UK: UMI Dissertation Publishing, 2008: 145-149. |
40 | Zandersons J, Zhurinsh A, Dobele G, et al. Feasibility of broadening the feedstock choice for levoglucosenone production by acid pre-treatment of wood and catalytic pyrolysis of the obtained lignocellulose[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 222-226. |
41 | Li K, Zhang Z X, Ma S W, et al. Effects of NH4H2PO4-loading and temperature on the two-stage pyrolysis of biomass: analytical pyrolysis-gas chromatography/mass spectrometry study[J]. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 76-82. |
42 | Nowakowski D J, Woodbridge C R, Jones J M. Phosphorus catalysis in the pyrolysis behaviour of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(2): 197-204. |
43 | Branca C, Galgano A, Blasi C, et al. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy & Fuels, 2011, 25(1): 359-369. |
44 | Sui X W, Wang Z, Liao B, et al. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature[J]. Bioresource Technology, 2012, 103(1): 466-469. |
45 | Rutkowski P. Pyrolytic behavior of cellulose in presence of montmorillonite K10 as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 115-122. |
46 | Doroshenko A, Pylypenko I, Heaton K, et al. Selective microwave-assisted pyrolysis of cellulose towards levoglucosenone with clay catalysts[J]. ChemSusChem, 2019, 12(24): 5224-5227. |
47 | Santander J A, Alvarez M, Gutierrez V, et al. Solid phosphoric acid catalysts based on mesoporous silica for levoglucosenone production via cellulose fast pyrolysis[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(2): 484-493. |
48 | Ye X N, Lu Q, Wang X, et al. Catalytic fast pyrolysis of cellulose and biomass to selectively produce levoglucosenone using activated carbon catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10815-10825. |
49 | 夏海岸, 黄彩燕, 肖媛媛, 等. 磷酸铁催化热解纤维素制备左旋葡萄糖酮[J]. 广东化工, 2013, 40(18): 15-16+11. |
Xia H A, Huang C Y, Xiao Y Y, et al. Catalytic pyrolysis of cellulose into levoglucosenone using FePO4 as catalyst[J]. Guangdong Chemical Industry, 2013, 40(18): 15-16+11. | |
50 | Wang Z, Lu Q, Zhu X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem, 2011, 4(1): 79-84. |
51 | Lu Q, Zhang X M, Zhang Z B, et al. Catalytic fast pyrolysis of cellulose mixed with sulfated titania to produce levoglucosenoe: analytical Py-GC/MS study[J]. Bioresources, 2012, 7(3): 2820-2834. |
52 | Lu Q, Ye X N, Zhang Z B, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresource Technology, 2014, 171: 10-15. |
53 | Kudo S, Zhou Z, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
54 | Kudo S, Goto N, Sperry J, et al. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 1132-1140. |
55 | Huang X, Kudo S, Hayashi J. Two-step conversion of cellulose to levoglucosenone using updraft fixed bed pyrolyzer and catalytic reformer[J]. Fuel Processing Technology, 2019, 191: 29-35. |
56 | Ohtani H, Komura T, Sonoda N, et al. Evaluation of acidic paper deterioration in library materials by pyrolysis-gas chromatography[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 460-464. |
57 | Long Y, Yu Y, Chua Y W, et al. Acid-catalysed cellulose pyrolysis at low temperatures[J]. Fuel, 2017, 193: 460-466. |
58 | Hu B, Lu Q, Wu Y T, et al. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. Journal of Energy Chemistry, 2020, 43: 78-89. |
59 | Meng X, Zhang H Y, Liu C, et al. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS[J]. Energy & Fuels, 2016, 30(10): 8369-8376. |
60 | Rizhikovs J, Brazdausks P, Dobele G, et al. Pretreated hemp shives: possibilities of conversion into levoglucosan and levoglucosenone[J]. Industrial Crops and Products, 2019, 139:111520. |
61 | Zhang H, Meng X, Liu C, et al. Selective low-temperature pyrolysis of microcrystalline cellulose to produce levoglucosan and levoglucosenone in a fixed bed reactor[J]. Fuel Processing Technology, 2017, 167: 484-490. |
62 | 黄鹏, 张文超, 姚靖靖, 等. 生物质催化裂解选择性制备化学品的研究进展[J]. 现代化工, 2017, 37(6): 53-57+59. |
Huang P, Zhang W C, Yao J J, et al. Research progress on selective preparation of chemicals by catalytic pyrolysis of biomass[J]. Modern Chemical Industry, 2017, 37(6): 53-57+59. | |
63 | Torri C, Lesci I G, Fabbri D. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 192-196. |
64 | Casoni A I, Nievas M L, Moyano E L, et al. Catalytic pyrolysis of cellulose using MCM-41 type catalysts[J]. Applied Catalysis A: General, 2016, 514: 235-240. |
65 | Fabbri D, Torri C, Mancini I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chemistry, 2007, 9(12): 1374-1379. |
66 | Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study[J]. Journal of Analytical and Applied Pyrolysis, 2006, 80(1): 24-29. |
67 | Wei X, Wang Z, Wu Y, et al. Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 150-154. |
68 | Feng L, Chen Z L. Research progress on dissolution and functional modification of cellulose in ionic liquids[J]. Journal of Molecular Liquids, 2008, 142(1/2/3): 1-5. |
69 | 张锁江, 刘晓敏, 姚晓倩, 等. 离子液体的前沿、进展及应用[J]. 中国科学(B辑:化学), 2009, 39(10): 1134-1144. |
Zhang S J, Liu X M, Yao X Q, et al. Frontier, progress and application of ionic liquids[J]. Science in China (Series B:Chemistry), 2009, 39(10): 1134-1144. | |
70 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅰ): Py-GC/MS实验[J]. 化工学报, 2010, 61(4): 1018-1024. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅰ): Py-GC/MS experiments[J]. CIESC Journal, 2010, 61(4): 1018-1024. | |
71 | 陆强, 张栋, 朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅱ): 机理分析[J]. 化工学报, 2010, 61(4):1025-1032. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose(Ⅱ): Mechanism analysis[J]. CIESC Journal, 2010, 61(4): 1025-1032. | |
72 | Rutkowski P. Catalytic effects of copper(Ⅱ) chloride and aluminum chloride on the pyrolytic behavior of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 86-97. |
73 | Diblasi C. Modeling chemical and physical processes of wood and biomass pyrolysis[J]. Progress in Energy and Combustion Science, 2008, 34(1): 47-90. |
74 | Lu Q, Dong C Q, Zhang X M, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2): 204-212. |
75 | Rutkowski P. Chemical composition of bio-oil produced by co-pyrolysis of biopolymer/polypropylene mixtures with K2CO3 and ZnCl2 addition[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 38-47. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[10] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[11] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[12] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[13] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[14] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[15] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||