CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 255-265.DOI: 10.11949/0438-1157.20211149
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Qianhao WANG1,2(),Lu ZHAO1(),Fulin SUN1,3,Kegong FANG1
Received:
2021-08-12
Revised:
2021-11-10
Online:
2022-01-18
Published:
2022-01-05
Contact:
Lu ZHAO
通讯作者:
赵璐
作者简介:
王乾浩(1994—),男,硕士研究生,基金资助:
CLC Number:
Qianhao WANG, Lu ZHAO, Fulin SUN, Kegong FANG. Production of syngas derived from H2S-CO2via synergy of ZSM-5 catalyst and non-thermal plasma[J]. CIESC Journal, 2022, 73(1): 255-265.
王乾浩, 赵璐, 孙付琳, 房克功. ZSM-5催化剂与低温等离子体协同转化H2S-CO2制合成气[J]. 化工学报, 2022, 73(1): 255-265.
Add to citation manager EndNote|Ris|BibTeX
Si/Al比 | 比表面积/(m2/g) | 介电常数ε |
---|---|---|
25 | 305 | 3.15 |
38 | 318 | 3.27 |
50 | 324 | 3.37 |
80 | 306 | 3.42 |
200 | 307 | 3.49 |
Table 1 Specific surface area and dielectric constant of ZSM-5 catalysts with various Si/Al molar ratios
Si/Al比 | 比表面积/(m2/g) | 介电常数ε |
---|---|---|
25 | 305 | 3.15 |
38 | 318 | 3.27 |
50 | 324 | 3.37 |
80 | 306 | 3.42 |
200 | 307 | 3.49 |
Si/Al比 | H2S转化率/% | CO2转化率/% |
---|---|---|
25 | 5.0 | 0.9 |
38 | 2.9 | 0.8 |
50 | 3.5 | 1.3 |
80 | 5.3 | 1.4 |
200 | 5.9 | 1.2 |
Table 2 The thermal conversion of H2S-CO2 in the presence of packing various ZSM-5 catalysts without non-thermal plasma
Si/Al比 | H2S转化率/% | CO2转化率/% |
---|---|---|
25 | 5.0 | 0.9 |
38 | 2.9 | 0.8 |
50 | 3.5 | 1.3 |
80 | 5.3 | 1.4 |
200 | 5.9 | 1.2 |
Fig.4 H2S-CO2 conversion as a function of SEI in the presence of packing various ZSM-5 catalysts in non-thermal plasma(feed: H2S/CO2 molar ratio = 1∶4; 20%(vol) N2 in H2S-CO2 gas; feed flow rate 200 ml/min; material bed volume 15 ml)
Fig.5 Gaseous product distributions, H2 and CO yields and H2/CO molar ratios in H2S-CO2 conversion with packing various ZSM-5 catalysts in non-thermal plasma(feed: H2S/CO2 molar ratio = 1∶4; 20%(vol) N2 in H2S-CO2 gas; feed flow rate 200 ml/min; material bed volume 15 ml)
Fig.6 Q-U Lissajous figures, discharge power and effective capacitance in H2S-CO2 conversion with packing various ZSM-5 catalysts in non-thermal plasma(feed: H2S/CO2 molar ratio = 1∶4; 20%(vol) N2 in H2S-CO2 gas; feed flow rate 200 ml/min; material bed volume 15 ml; input power 95 W)
1 | Hendrickson R G, Chang A, Hamilton R J. Co-worker fatalities from hydrogen sulfide[J]. American Journal of Industrial Medicine, 2004, 45(4): 346-350. |
2 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
Liu C J, Guo Q T, Ye J Y, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
3 | Bai S T, de Smet G, Liao Y, et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions[J]. Chemical Society Reviews, 2021, 50(7): 4259-4298. |
4 | Liu J L, Park H W, Chung W J, et al. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma[J]. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437-449. |
5 | Kim S C, Lim M S, Chun Y N. Reduction characteristics of carbon dioxide using a plasmatron[J]. Plasma Chemistry and Plasma Processing, 2014, 34(1): 125-143. |
6 | Zhang K, Mukhriza T, Liu X T, et al. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges[J]. Applied Catalysis A: General, 2015, 502: 138-149. |
7 | Schieweck B G, Jürling-Will P, Klankermayer J. Structurally versatile ligand system for the ruthenium catalyzed one-pot hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2020, 10(6): 3890-3894. |
8 | 吴秀章. 煤制低碳烯烃工艺与工程[M]. 北京: 化学工业出版社, 2014: 111. |
Wu X Z. Coal-to-olefins Technology and Engineering [M]. Beijing: Chemical Industry Press, 2014: 111. | |
9 | Fridman A. Plasma Chemistry[M]. New York:Cambridge University Press, 2008: 13. |
10 | Saleem F, Zhang K, Harvey A P. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma[J]. Chemical Engineering Journal, 2019, 360: 714-720. |
11 | Ellmer K, Lichtenberger D. Plasma diagnostics by energy resolved quadrupole mass spectrometry of a reactive magnetron sputtering discharge from an Fe target in Ar-H2S atmospheres[J]. Surface and Coatings Technology, 1995, 74/75: 586-593. |
12 | Lan L Y, Wang A J, Wang Y. CO2 hydrogenation to lower hydrocarbons over ZSM-5-supported catalysts in a dielectric-barrier discharge plasma reactor[J]. Catalysis Communications, 2019, 130: 105761. |
13 | Zhao L, Wang Y, Jin L, et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors[J]. Green Chemistry, 2013, 15(6): 1509-1513. |
14 | 周柒, 丁红蕾, 郭得通, 等. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
Zhou Q, Ding H L, Guo D T, et al. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443. | |
15 | Zhao L, Liu X Z, Mu X L, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3[J]. Journal of CO2 Utilization, 2020, 37: 45-54. |
16 | 房克功, 赵璐, 李文斌, 等. 转化二氧化碳和硫化氢混合气制取合成气的方法及装置: 107244652B[P]. 2019-12-06. |
Fang K G, Zhao L, Li W B, et al. Method and device for preparing synthetic gas by converting carbon dioxide and hydrogen sulfide mixture: 107244652B[P]. 2019-12-06. | |
17 | Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism[J]. Microporous and Mesoporous Materials, 2005, 82(1/2): 1-78. |
18 | Derouane E G, Determmerie S, Gabelica Z, et al. Synthesis and characterization of ZSM-5 type zeolites Ⅰ. Physico-chemical properties of precursors and intermediates[J]. Applied Catalysis, 1981, 1(3/4): 201-224. |
19 | Kim H H, Lee Y H, Ogata A, et al. Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition[J]. Catalysis Communications, 2003, 4(7): 347-351. |
20 | Zhao L, Wang Y, Li X, et al. Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14415-14423. |
21 | Pour A N, Zare M, Kamali Shahri S M, et al. Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer-Tropsch synthesis[J]. Journal of Natural Gas Science and Engineering, 2009, 1(6): 183-189. |
22 | 滕加伟, 赵国良, 谢在库, 等. ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J]. 催化学报, 2004, 25(8): 602-606. |
Teng J W, Zhao G L, Xie Z K, et al. Effect of ZSM-5 zeolite crystal size on propylene production from catalytic cracking of C4 olefins[J]. Chinese Journal of Catalysis, 2004, 25(8): 602-606. | |
23 | Chen H L, Lee H M, Chen S H, et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects[J]. Applied Catalysis B: Environmental, 2008, 85(1/2): 1-9. |
24 | Zhang X, Liu Y, Zhang M T, et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO[J]. Chem, 2020, 6(12): 3312-3328. |
25 | Diao Y N, Zhang X, Liu Y, et al. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter[J]. Applied Catalysis B: Environmental, 2022, 301: 120779. |
26 | Liu X Z, Zhao L, Li Y, et al. Ni-Mo sulfide semiconductor catalyst with high catalytic activity for one-step conversion of CO2 and H2S to syngas in non-thermal plasma[J]. Catalysts, 2019, 9(6): 525. |
27 | Zeng Y X, Tu X. Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition[J]. Journal of Physics D: Applied Physics, 2017, 50(18): 184004. |
28 | Liang W J, Fang H P, Li J, et al. Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide[J]. Journal of Electrostatics, 2011, 69(3): 206-213. |
29 | Zhang X H, Lin L, Zhang T, et al. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 284: 934-941. |
30 | 邹吉军. 等离子体处理制备高效催化剂的基础研究[D]. 天津: 天津大学, 2005. |
Zou J J. On the preparation of highly efficient catalysts using cold plasma treatment[D]. Tianjin: Tianjin University, 2005. | |
31 | Snoeckx R, Bogaerts A. Plasma technology—a novel solution for CO2 conversion? [J]. Chemical Society Reviews, 2017, 46(19): 5805-5863. |
32 | Zhang L P, Karakas G, Ozkan U S. NiMoS/γ-Al2O3 catalysts: the nature and the aging behavior of active sites in HDN reactions[J]. Journal of Catalysis, 1998, 178(2): 457-465. |
33 | Zhao L, Wang Y, Wang A J, et al. Cr-doped ZnS semiconductor catalyst with high catalytic activity for hydrogen production from hydrogen sulfide in non-thermal plasma[J]. Catalysis Today, 2019, 337: 83-89. |
34 | Zhao G B, John S, Zhang J J, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor[J]. Chemical Engineering Science, 2007, 62(8): 2216-2227. |
35 | Lacroix M, Dumonteil C, Breysse M, et al. Hydrogen activation on alumina supported MoS2 based catalysts: role of the promoter[J]. Journal of Catalysis, 1999, 185(1): 219-222. |
36 | Wang A Q, Ma L, Cong Y, et al. Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen[J]. Applied Catalysis B: Environmental, 2003, 40(4): 319-329. |
37 | Lupinetti A J, Fau S, Frenking G, et al. Theoretical analysis of the bonding between CO and positively charged atoms[J]. The Journal of Physical Chemistry A, 1997, 101(49): 9551-9559. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[7] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[11] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[14] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[15] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||