CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1102-1110.DOI: 10.11949/0438-1157.20211656
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ye WANG1(),Wanyu ZHANG1,Bin WANG2,Rui ZHUAN2,Feng REN2,Aifeng CAI1,Guang YANG1(),Jingyi WU1
Received:
2021-11-19
Revised:
2022-01-06
Online:
2022-03-14
Published:
2022-03-15
Contact:
Guang YANG
王晔1(),张婉雨1,汪彬2,耑锐2,任枫2,蔡爱峰1,杨光1(),吴静怡1
通讯作者:
杨光
作者简介:
王晔(1995—),女,博士研究生,基金资助:
CLC Number:
Ye WANG, Wanyu ZHANG, Bin WANG, Rui ZHUAN, Feng REN, Aifeng CAI, Guang YANG, Jingyi WU. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110.
王晔, 张婉雨, 汪彬, 耑锐, 任枫, 蔡爱峰, 杨光, 吴静怡. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110.
Add to citation manager EndNote|Ris|BibTeX
实验工质 | 密度/ (kg/m3) | 表面张力/ (mN/m) | 不锈钢平面 接触角/(°) |
---|---|---|---|
水 | 998.2 | 72.7 | 73 |
HFE 7500 | 1631.4 | 15.5 | 0 |
航天煤油 | 833.0 | 23.9 | 21 |
Table 1 Physical properties of the fluids at 101 kPa and 20℃
实验工质 | 密度/ (kg/m3) | 表面张力/ (mN/m) | 不锈钢平面 接触角/(°) |
---|---|---|---|
水 | 998.2 | 72.7 | 73 |
HFE 7500 | 1631.4 | 15.5 | 0 |
航天煤油 | 833.0 | 23.9 | 21 |
网幕规格 | 数据来源 | 实验测量值/μm | 模型预测值/μm | 相对误差/% |
---|---|---|---|---|
80×700 | Camarotti等[ | 58.65 | 49.15 | 16.2 |
165×1400 | H?fflin等[ | 23.95 | 25.90 | 8.1 |
Blatt[ | 28.30 | 25.90 | 8.5 | |
200×1400 | Hartwig等[ | 21.73 | 21.49 | 1.1 |
Conrath等[ | 20.00 | 21.49 | 7.5 | |
250×1370 | Hartwig等[ | 19.21 | 20.32 | 5.8 |
250×1400 | Hartwig等[ | 18.44 | 20.32 | 10.2 |
325×2300 | Hartwig等[ | 14.30 | 12.89 | 9.8 |
H?fflin等[ | 12.42 | 12.89 | 3.8 | |
本文实验 | 12.67 | 12.89 | 1.8 | |
450×2750 | Camarotti等[ | 11.69 | 9.84 | 15.9 |
Table 2 Comparison between the measured and the predicted value of the effective bubble point diameter
网幕规格 | 数据来源 | 实验测量值/μm | 模型预测值/μm | 相对误差/% |
---|---|---|---|---|
80×700 | Camarotti等[ | 58.65 | 49.15 | 16.2 |
165×1400 | H?fflin等[ | 23.95 | 25.90 | 8.1 |
Blatt[ | 28.30 | 25.90 | 8.5 | |
200×1400 | Hartwig等[ | 21.73 | 21.49 | 1.1 |
Conrath等[ | 20.00 | 21.49 | 7.5 | |
250×1370 | Hartwig等[ | 19.21 | 20.32 | 5.8 |
250×1400 | Hartwig等[ | 18.44 | 20.32 | 10.2 |
325×2300 | Hartwig等[ | 14.30 | 12.89 | 9.8 |
H?fflin等[ | 12.42 | 12.89 | 3.8 | |
本文实验 | 12.67 | 12.89 | 1.8 | |
450×2750 | Camarotti等[ | 11.69 | 9.84 | 15.9 |
1 | 马原, 厉彦忠, 王磊, 等. 低温推进剂在轨加注技术与方案研究综述[J]. 宇航学报, 2016, 37(3): 245-252. |
Ma Y, Li Y Z, Wang L, et al. Review on on-orbit refueling techniques and schemes of cryogenic propellants[J]. Journal of Astronautics, 2016, 37(3): 245-252. | |
2 | Hartwig J W. Propellant management devices for low-gravity fluid management: past, present, and future applications[J]. Journal of Spacecraft and Rockets, 2017, 54(4): 808-824. |
3 | 马原, 陈虹, 邢科伟, 等. 低温推进剂网幕通道式液体获取装置性能研究进展[J]. 制冷学报, 2019, 40(3): 1-7. |
Ma Y, Chen H, Xing K W, et al. Review of screen channel liquid acquisition device for cryogenic propellants[J]. Journal of Refrigeration, 2019, 40(3): 1-7. | |
4 | Pingel A, Dreyer M E. Phase separation of liquid from gaseous hydrogen in microgravity experimental results[J]. Microgravity Science and Technology, 2019, 31(5): 649-671. |
5 | Behruzi P, Klatte J, Netter G. Passive phase separation in cryogenic upper stage tanks[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013. |
6 | Hartwig J, Darr S. Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J]. Applied Thermal Engineering, 2014, 66(1/2): 548-562. |
7 | Savas A J, Hartwig J W, Moder J P. Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J]. International Journal of Heat and Mass Transfer, 2014, 74: 403-413. |
8 | Hartwig J W, Kamotani Y. The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 99: 31-43. |
9 | Hartwig J, McQuillen J. Screen channel liquid-acquisition-device bubble point tests in liquid methane[J]. Journal of Thermophysics and Heat Transfer, 2014, 29(2): 364-375. |
10 | Hartwig J W. Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J]. Cryogenics, 2016, 74: 95-105. |
11 | 马原, 孙靖阳, 厉彦忠, 等. 增压速率对多孔金属筛网泡破压力影响的实验研究[J]. 西安交通大学学报, 2021, 55(11): 192-198. |
Ma Y, Sun J Y, Li Y Z, et al. Experimental study on the effects of pressurization rate on bubble point pressure of porous metallic screens[J]. Journal of Xi'an Jiaotong University, 2021, 55(11): 192-198. | |
12 | Hartwig J W, Kamotani Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 101: 502-516. |
13 | Hartwig J, Mann J A. A predictive bubble point pressure model for porous liquid acquisition device screens[J]. Journal of Porous Media, 2014, 17(7): 587-600. |
14 | Hartwig J, Mann J A. Bubble point pressures of binary methanol/water mixtures in fine-mesh screens[J]. AIChE Journal, 2014, 60(2): 730-739. |
15 | Hartwig J, Chato D, McQuillen J. Screen channel LAD bubble point tests in liquid hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(2): 853-861. |
16 | Hartwig J W, Chato D J, McQuillen J B, et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics, 2014, 64: 295-306. |
17 | Conrath M, Dreyer M. Gas breakthrough at a porous screen[J]. International Journal of Multiphase Flow, 2012, 42: 29-41. |
18 | Camarotti C, Deng O, Darr S, et al. Room temperature bubble point, flow-through screen, and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering, 2019, 149: 1170-1185. |
19 | Höfflin C, Gerstmann J. Study on the gas retention capability of metallic screens[C]//5th European Conference for Aerospace Sciences (EUCASS). 2013. |
20 | Blatt M. Low gravity propellant control using capillary devices in large scale cryogenic vehicles[R]. 1970. |
21 | Darr S R, Hartwig J W, Chung J N. Flow-through-screen pressure drop model for screen channel liquid acquisition devices[J]. Journal of Porous Media, 2019, 22(9): 1177-1195. |
22 | 周勇瑞, 朱庆春, 耑锐, 等. 通道式液体获取装置筛网低温力学特性研究[J]. 低温与超导, 2021, 49(11): 25-31. |
Zhou Y R, Zhu Q C, Zhuan R, et al. Study on cryogenic mechanical properties of screen mesh for channel liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(11): 25-31. | |
23 | Bingham P, Tegart J. Wicking in fine mesh screens[C]//13th Propulsion Conference. Reston, Viriginia: AIAA, 1977: 1-9. |
24 | Cady E C. Effect of transient liquid flow on retention characteristics of screen acquisition systems[R]. McDonnell-Douglas Astronautics Co., Huntington Beach, CA,1977. |
25 | Fester D A, Villars A J, Uney P E. Surface tension propellant acquisition system technology for space shuttle reaction control tanks[J]. Journal of Spacecraft and Rockets, 1976, 13(9): 522-527. |
26 | Simon E D. Environmental requirements for bubble pressure tests on fine-mesh screen[J]. Journal of Spacecraft and Rockets, 1979, 16(4): 218-222. |
27 | Kudlac M, Jurns J. Screen channel liquid acquisition devices for liquid oxygen[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2006. |
28 | Chato D, Kudlac M. Screen channel liquid acquisition devices for cryogenic propellants[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virginia: AIAA, 2002. |
29 | Hartwig J, Mann Jr J A, Darr S R. Parametric analysis of the liquid hydrogen and nitrogen bubble point pressure for cryogenic liquid acquisition devices[J]. Cryogenics, 2014, 63: 25-36. |
30 | Cady E. Study of thermodynamic vent and screen baffle integration for orbital storage and transfer of liquid hydrogen[R]. 1973. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[8] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[9] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[10] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[13] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[14] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[15] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||