1 |
马一太, 王派, 李敏霞, 等. 温室效应及第四代制冷工质[J]. 制冷技术, 2017, 37(5):8-13.
|
|
Ma Y T, Wang P, Li M X, et al. Greenhouse effect and the fourth generation of refrigerant[J]. Chinese Journal of Refrigeration Technology, 2017, 37(5): 8-13.
|
2 |
Liu B T, Chien K H, Wang C C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29(8): 1207-1217.
|
3 |
王小艳, 司继林, 张达, 等. 纯物质临界参数估算方法的研究进展[J]. 化工进展, 2012, 31(9): 1871-1877.
|
|
Wang X Y, Si J L, Zhang D, et al. Research progress of estimation methods for critical parameters of pure substances[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 1871-1877
|
4 |
Kay W B, Pak S C. Determination of the critical constants of high-boiling hydrocarbons experiments with gallium as a containing liquid[J]. The Journal of Chemical Thermodynamics, 1980, 12(7): 673-681.
|
5 |
Kleinrahm R, Wagner W. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane[J]. The Journal of Chemical Thermodynamics, 1986, 18(8): 739-760.
|
6 |
Reid R C, Sherwood T K, Street R E. The properties of gases and liquids[J]. Physics Today, 1959, 12(4):38-40.
|
7 |
周传光, 杨福胜, 胡仰栋, 等. 由化合物的沸点及比重推算临界参数[J]. 计算机与应用化学, 1994, 11(2): 123-126.
|
|
Zhou C G, Yang F S, Hu Y D, et al. Estimation critical properties with normal boiling point and specific gravity of organic compounds[J]. Computers and Applied Chemistry, 1994, 11(2): 123-126.
|
8 |
王新红, 贾琦, 高进, 等. 用简单物性估算纯物质临界参数的方法[J]. 石油化工, 2005, 34(3): 254-257.
|
|
Wang X H, Jia Q, Gao J, et al. Calculation of critical properties of pure substances from their simple properties [J]. Petrochemical Technology, 2005, 34(3): 254-257.
|
9 |
Kontogeorgis G M, Smirlis I, Yakoumis I V, et al. Method for estimating critical properties of heavy compounds suitable for cubic equations of state and its application to the prediction of vapor pressures[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 4008-4012.
|
10 |
Hsieh C M, Lin S T. Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations[J]. AIChE Journal, 2008, 54(8): 2174-2181.
|
11 |
Lydersen L A. Estimation of critical properties of organic compounds[R]. Madison: University of Wisconsin, 1955.
|
12 |
Joback K G, Reid R C. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243.
|
13 |
Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40(10): 1697-1710.
|
14 |
Marrero-Morejón J, Pardillo-Fontdevila E. Estimation of pure compound properties using group-interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621.
|
15 |
Kohberger R. Similarity and clustering in chemical information systerns[J]. Technometrics, 1990, 32(3): 359-360.
|
16 |
Schultz H P, Schultz E B, Schultz T P. Topological organic chemistry(9): Graph theory and molecular topological indices of stereoisomeric organic compounds[J]. Journal of Chemical Information and Computer Sciences, 1995, 35(5): 864-870.
|
17 |
Muegge I, Mukherjee P. An overview of molecular fingerprint similarity search in virtual screening[J]. Expert Opinion on Drug Discovery, 2016, 11(2): 137-148.
|
18 |
Sun W B, Zheng Y J, Yang K, et al. Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials[J]. Science Advances, 2019, 5(11): eaay4275.
|
19 |
Alberga D, Trisciuzzi D, Mansouri K, et al. Prediction of acute oral systemic toxicity using a multifingerprint similarity approach[J]. Toxicological Sciences, 2018, 167(2): 484-495.
|
20 |
Cai S Y, Li Q B, Liu C, et al. Evaporation of R32/R152a mixtures on the Pt surface: a molecular dynamics study [J]. International Journal of Refrigeration, 2020, 113: 156-163.
|
21 |
Hu J Y, Liu C, Li Q B, et al. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1345-1348.
|
22 |
Li Q B, Xiao Y T, Shi X Y, et al. Rapid evaporation of water on graphene/graphene-oxide: a molecular dynamics study[J]. Nanomaterials, 2017, 7(9): 265.
|
23 |
Zhou Y J, Li Q B, Wang Q. Energy storage analysis of UIO-66 and water mixed nanofluids: an experimental and theoretical study[J]. Energies, 2019, 12(13): 2521.
|
24 |
陈华胜, 刘朝, 李期斌, 等. 高含硫天然气中硫溶解度的热力学一致性评估[J]. 工程热物理学报, 2019, 40(12): 2733-2737.
|
|
Chen H S, Liu C, Li Q B, et al. Thermodynamic consistency test of sulfur solubility in sour gas[J]. Journal of Engineering Thermophysics, 2019, 40(12): 2733-2737.
|
25 |
Rowley R, Wilding W, Oscarson L, et al. DIPPR® data compilation of pure chemical properties[DB]. American Institute of Chemical Engineers, 2014.
|
26 |
Calm J M, Hourahan G C. Physical, safety, and environmental data for current and alternative refrigerants[C]// Refrigeration for Sustainable Development, Proceedings of the 23rd International Congress of Refrigeration. Pairs, France: International Institute of Refrigeration, 2011.
|
27 |
Dong J, Cao D S, Miao H Y, et al. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation[J]. Journal of Cheminformatics, 2015, 7: 60.
|
28 |
Hashemkhani M, Soleimani R, Fazeli H, et al. Prediction of the binary surface tension of mixtures containing ionic liquids using support vector machine algorithms[J]. Journal of Molecular Liquids, 2015, 211: 534-552.
|
29 |
Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(6): 1947-1958.
|
30 |
Gao N, Wang X H, Xuan Y M, et al. An artificial neural network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants[J]. International Journal of Refrigeration, 2019, 98: 381-387.
|
31 |
Nabipour M. Prediction of surface tension of binary refrigerant mixtures using artificial neural networks[J]. Fluid Phase Equilibria, 2018, 456: 151-160.
|
32 |
Zolfaghari H, Yousefi F. Thermodynamic properties of lubricant/refrigerant mixtures using statistical mechanics and artificial intelligence[J]. International Journal of Refrigeration, 2017, 80: 130-144.
|
33 |
Deng S, Su W, Zhao L. A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index[J]. International Journal of Refrigeration, 2016, 63: 63-71.
|
34 |
苏文, 赵力, 邓帅. 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11): 4689-4695.
|
|
Su W, Zhao L, Deng S. Prediction of refrigerant critical temperature with genetic neural network based on group topology[J]. CIESC Journal, 2016, 67(11): 4689-4695.
|
35 |
Cheshmberah F, Fathizad H, Parad G A, et al. Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration[J]. International Journal of Environmental Science and Technology, 2020, 17(9): 3891-3900.
|
36 |
Klincewicz K M, Reid R C. Estimation of critical properties with group contribution methods[J]. AIChE Journal, 1984, 30(1): 137-142.
|