CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1557-1565.DOI: 10.11949/0438-1157.20211719
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hongxia CHEN(),Linhan LI,Xiang GAO,Yiran WANG,Yuxiang GUO
Received:
2021-12-02
Revised:
2022-01-29
Online:
2022-04-25
Published:
2022-04-05
Contact:
Hongxia CHEN
通讯作者:
陈宏霞
作者简介:
陈宏霞(1980—),女,博士,副教授,基金资助:
CLC Number:
Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565.
陈宏霞, 李林涵, 高翔, 王逸然, 郭宇翔. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565.
Add to citation manager EndNote|Ris|BibTeX
1 | 黄瑞涛, 春江, 张峥, 等. 微纳复合表面HFE-7100/水的BRT现象及沸腾传热特性[J]. 化工学报, 2021, 72(11): 5510-5519. |
Huang R T, Chun J, Zhang Z, et al. Boiling refrigerant transition and heat transfer characteristics of HFE-7100/water on the hierarchical structured surfaces[J]. CIESC Journal, 2021, 72(11): 5510-5519. | |
2 | 罗小平, 王文, 廖政标, 等. 基于不同润湿性微细通道过冷沸腾起始点(ONB)的实验研究[J]. 化工进展, 2018, 37(3): 884-892. |
Luo X P, Wang W, Liao Z B, et al. Experimental study on onset of nucleate boiling(ONB) in different wettability micro-channels[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 884-892. | |
3 | Xu Z G, Zhao C Y. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions[J]. Applied Thermal Engineering, 2016, 100: 68-77. |
4 | 张伟, 牛志愿, 李亚, 等. 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3764. |
Zhang W, Niu Z Y, Li Y, et al. Pool boiling heat transfer characteristics on graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3764. | |
5 | Wen R F, Li Q, Wang W, et al. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65. |
6 | Yin L F, Jia L. Confined bubble growth and heat transfer characteristics during flow boiling in microchannel[J]. International Journal of Heat and Mass Transfer, 2016, 98: 114-123. |
7 | 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. |
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989. | |
8 | Tanaka T, Miyazaki K, Yabuki T. Electrolytic bubble nucleation activation in pool boiling of water: heat transfer enhancement and reduction of incipient boiling superheat[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119755. |
9 | Hsu W T, Lee D, Lee N, et al. Enhancement of flow boiling heat transfer using heterogeneous wettability patterned surfaces with varying inter-spacing[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120596. |
10 | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301. | |
11 | Yim K, Lee J, Naccarato B, et al. Surface wettability effect on nucleate pool boiling heat transfer with titanium oxide (TiO2) coated heating surface[J]. International Journal of Heat and Mass Transfer, 2019, 133: 352-358. |
12 | 姜洪鹏, 白敏丽, 高栋栋, 等. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
Jiang H P, Bai M L, Gao D D, et al. Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface[J]. CIESC Journal, 2021, 72(8): 4093-4103. | |
13 | Sarode A, Raj R, Bhargav A. On the role of confinement plate wettability on pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119723. |
14 | 潘丰, 王超杰, 母立众, 等. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527. |
Pan F, Wang C J, Mu L Z, et al. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527. | |
15 | Wang Y Q, Luo J L, Heng Y, et al. Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure[J]. International Journal of Heat and Mass Transfer, 2018, 119: 333-342. |
16 | Sarker D, Ding W, Franz R, et al. Investigations on the effects of heater surface characteristics on the bubble waiting period during nucleate boiling at low subcooling[J]. Experimental Thermal and Fluid Science, 2019, 101: 76-86. |
17 | Liang G T, Chen Y, Wang J J, et al. Experiments and modeling of boiling heat transfer on hybrid-wettability surfaces[J]. International Journal of Multiphase Flow, 2021, 144: 103810. |
18 | Kong X, Wei J J, Deng Y P, et al. A study on enhancement of boiling heat transfer by mixed-wettability surface[J]. Heat Transfer Engineering, 2018, 39(17/18): 1552-1561. |
19 | Shen B, Hamazaki T, Ma W, et al. Enhanced pool boiling of ethanol on wettability-patterned surfaces[J]. Applied Thermal Engineering, 2019, 149: 325-331. |
20 | Hsu C C, Lee M R, Wu C H, et al. Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling[J]. Applied Thermal Engineering, 2017, 112: 1187-1194. |
21 | Wang Y H, Wang S Y, Lu G, et al. Effects of wettability on explosive boiling of nanoscale liquid films: whether the classical nucleation theory fails or not? [J]. International Journal of Heat and Mass Transfer, 2019, 132: 1277-1283. |
22 | Hasan M N, Paul S, Rownak M R, et al. Atomic insights of thin-film evaporation over biphilic surfaces: effect of philic-phobic patterning and wettability contrast[J]. Heat Transfer-Asian Research, 2019, 48(8): 4283-4300. |
23 | 周吉, 朱恂, 丁玉栋, 等. 液体通流微小槽道内气泡动力学行为模拟[J]. 化工学报, 2011, 62(10): 2740-2746. |
Zhou J, Zhu X, Ding Y D, et al. Numerical simulation of gas bubble emerging from pore into liquid flow micro-channel[J]. CIESC Journal, 2011, 62(10): 2740-2746. | |
24 | Ma X J, Cheng P, Quan X J. Simulations of saturated boiling heat transfer on bio-inspired two-phase heat sinks by a phase-change lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1013-1024. |
25 | Lee J S, Lee J S. Numerical study of hydrophobic-island shapes with patterned wettability for pool boiling[J]. Applied Thermal Engineering, 2017, 127: 1632-1641. |
26 | Chen Y J, Zou Y, Wang Y, et al. Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation[J]. International Communications in Heat and Mass Transfer, 2018, 98: 135-142. |
27 | 张龙艳, 徐进良, 雷俊鹏. 纳米尺度下气泡核化生长的分子动力学研究[J]. 物理学报, 2018, 67(23): 234702. |
Zhang L Y, Xu J L, Lei J P. Molecular dynamics study of bubble nucleation on a nanoscale[J]. Acta Physica Sinica, 2018, 67(23): 234702. | |
28 | Chen H X, Li L H, Wang Y R, et al. Heat transfer enhancement in nucleate boiling on micropillar-arrayed surfaces with time-varying wettability[J]. Applied Thermal Engineering, 2022, 200: 117649. |
29 | 陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317. |
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70(4): 1309-1317. | |
30 | 陈宏霞, 李林涵, 王逸然, 等. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287. |
Chen H X, Li L H, Wang Y R, et al. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space[J]. CIESC Journal, 2021, 72(6): 3278-3287. | |
31 | Chen H X, Sun Y, Xiao H Y, et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 447-464. |
32 | Li W X, Li Q, Yu Y, et al. Enhancement of nucleate boiling by combining the effects of surface structure and mixed wettability: a lattice Boltzmann study[J]. Applied Thermal Engineering, 2020, 180: 115849. |
33 | 王烨, 蔡杰进. 基于微液层模型的单汽泡生长数值模拟研究[J]. 原子能科学技术, 2018, 52(4): 600-606. |
Wang Y, Cai J J. Numerical simulation of single bubble evolution based on microlayer model[J]. Atomic Energy Science and Technology, 2018, 52(4): 600-606. | |
34 | Sato Y, Niceno B. A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52. |
35 | 陈宏霞, 孙源, 肖红洋, 等. 微柱结构表面核态沸腾单气泡的数值模拟[J]. 化工进展, 2019, 38(11): 4845-4855. |
Chen H X, Sun Y, Xiao H Y, et al. Numerical simulation of single bubble boiling on micro-pillar structure surface[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[14] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||