CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 1920-1929.DOI: 10.11949/0438-1157.20211791
• Thermodynamics • Previous Articles Next Articles
Received:
2021-12-20
Revised:
2022-02-12
Online:
2022-05-24
Published:
2022-05-05
Contact:
Haichao LIU
通讯作者:
刘海超
作者简介:
张家仁(1979—),男,博士,基金资助:
CLC Number:
Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol[J]. CIESC Journal, 2022, 73(5): 1920-1929.
张家仁, 刘海超. 大豆油与甲醇酯交换反应体系的相平衡研究[J]. 化工学报, 2022, 73(5): 1920-1929.
Add to citation manager EndNote|Ris|BibTeX
序号 | 总组成(质量分数) | Conv./% | 酯相组成(质量分数) | 甘油相组成(质量分数) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x1 | x2 | x3 | x4 | x1 | x2 | x3 | x4 | ||
间歇反应 | |||||||||||||
1 | 0.821 | 0.179 | 0 | 0.915 | 0.085 | 0.011 | 0.989 | ||||||
2 | 0.736 | 0.171 | 0.011 | 0.082 | 10.03 | 0.839 | 0.071 | 0 | 0.091 | 0.006 | 0.889 | 0.083 | 0.023 |
3 | 0.654 | 0.161 | 0.020 | 0.165 | 20.11 | 0.745 | 0.070 | 0 | 0.184 | 0.004 | 0.810 | 0.153 | 0.033 |
4 | 0.335 | 0.127 | 0.057 | 0.480 | 58.88 | 0.384 | 0.068 | 0.001 | 0.547 | 0.001 | 0.543 | 0.444 | 0.013 |
5 | 0.164 | 0.108 | 0.070 | 0.659 | 80.09 | 0.187 | 0.060 | 0.001 | 0.752 | 0 | 0.445 | 0.549 | 0.006 |
6 | 0.083 | 0.099 | 0.079 | 0.740 | 89.97 | 0.094 | 0.059 | 0.002 | 0.845 | 0 | 0.387 | 0.609 | 0.004 |
7 | 0.088 | 0.087 | 0.825 | 100.00 | 0.053 | 0.002 | 0.945 | 0.331 | 0.667 | 0.002 | |||
连续逆流分离甘油 | |||||||||||||
1 | 0.900 | 0.100 | 0 | 1.000 | 0 | 0.005 | 0 | 1.000 | |||||
2 | 0.874 | 0.034 | 0.092 | 0.000 | 0 | 0.980 | 0.015 | 0 | 0.188 | 0 | 0.183 | 0.817 | 0 |
3 | 0.622 | 0.149 | 0.072 | 0.157 | 20.13 | 0.767 | 0.044 | 0.001 | 0.384 | 0 | 0.591 | 0.402 | 0.007 |
4 | 0.512 | 0.088 | 0.059 | 0.342 | 40.05 | 0.577 | 0.039 | 0.001 | 0.574 | 0 | 0.456 | 0.540 | 0.004 |
5 | 0.352 | 0.071 | 0.040 | 0.537 | 60.37 | 0.375 | 0.050 | 0.001 | 0.723 | 0 | 0.384 | 0.612 | 0.004 |
6 | 0.173 | 0.113 | 0.020 | 0.695 | 80.08 | 0.180 | 0.094 | 0.003 | 0.805 | 0 | 0.579 | 0.390 | 0.031 |
7 | 0.088 | 0.106 | 0.022 | 0.784 | 89.88 | 0.092 | 0.099 | 0.004 | 0.005 | 0 | 0.528 | 0.455 | 0.017 |
8 | 0.098 | 0.005 | 0.898 | 100.00 | 完全互溶 |
Table 1 Overall compositions and phase equilibrium compositions for the quaternary system
序号 | 总组成(质量分数) | Conv./% | 酯相组成(质量分数) | 甘油相组成(质量分数) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x1 | x2 | x3 | x4 | x1 | x2 | x3 | x4 | ||
间歇反应 | |||||||||||||
1 | 0.821 | 0.179 | 0 | 0.915 | 0.085 | 0.011 | 0.989 | ||||||
2 | 0.736 | 0.171 | 0.011 | 0.082 | 10.03 | 0.839 | 0.071 | 0 | 0.091 | 0.006 | 0.889 | 0.083 | 0.023 |
3 | 0.654 | 0.161 | 0.020 | 0.165 | 20.11 | 0.745 | 0.070 | 0 | 0.184 | 0.004 | 0.810 | 0.153 | 0.033 |
4 | 0.335 | 0.127 | 0.057 | 0.480 | 58.88 | 0.384 | 0.068 | 0.001 | 0.547 | 0.001 | 0.543 | 0.444 | 0.013 |
5 | 0.164 | 0.108 | 0.070 | 0.659 | 80.09 | 0.187 | 0.060 | 0.001 | 0.752 | 0 | 0.445 | 0.549 | 0.006 |
6 | 0.083 | 0.099 | 0.079 | 0.740 | 89.97 | 0.094 | 0.059 | 0.002 | 0.845 | 0 | 0.387 | 0.609 | 0.004 |
7 | 0.088 | 0.087 | 0.825 | 100.00 | 0.053 | 0.002 | 0.945 | 0.331 | 0.667 | 0.002 | |||
连续逆流分离甘油 | |||||||||||||
1 | 0.900 | 0.100 | 0 | 1.000 | 0 | 0.005 | 0 | 1.000 | |||||
2 | 0.874 | 0.034 | 0.092 | 0.000 | 0 | 0.980 | 0.015 | 0 | 0.188 | 0 | 0.183 | 0.817 | 0 |
3 | 0.622 | 0.149 | 0.072 | 0.157 | 20.13 | 0.767 | 0.044 | 0.001 | 0.384 | 0 | 0.591 | 0.402 | 0.007 |
4 | 0.512 | 0.088 | 0.059 | 0.342 | 40.05 | 0.577 | 0.039 | 0.001 | 0.574 | 0 | 0.456 | 0.540 | 0.004 |
5 | 0.352 | 0.071 | 0.040 | 0.537 | 60.37 | 0.375 | 0.050 | 0.001 | 0.723 | 0 | 0.384 | 0.612 | 0.004 |
6 | 0.173 | 0.113 | 0.020 | 0.695 | 80.08 | 0.180 | 0.094 | 0.003 | 0.805 | 0 | 0.579 | 0.390 | 0.031 |
7 | 0.088 | 0.106 | 0.022 | 0.784 | 89.88 | 0.092 | 0.099 | 0.004 | 0.005 | 0 | 0.528 | 0.455 | 0.017 |
8 | 0.098 | 0.005 | 0.898 | 100.00 | 完全互溶 |
Fig.4 Experimental mass fractions versus predicted mass fractions by UNIFAC and Modified UNIFAC for phase equilibrium compositions of quaternary system
方法 | 间歇反应 | 连续逆流分离甘油 | ||
---|---|---|---|---|
MAD | MSD | MAD | MSD | |
UNIFAC | 0.020 | 0.001 | 0.019 | 0.002 |
Modified UNIFAC | 0.022 | 0.001 | 0.026 | 0.002 |
Table 2 Deviation of the experimental and calculated mass fractions
方法 | 间歇反应 | 连续逆流分离甘油 | ||
---|---|---|---|---|
MAD | MSD | MAD | MSD | |
UNIFAC | 0.020 | 0.001 | 0.019 | 0.002 |
Modified UNIFAC | 0.022 | 0.001 | 0.026 | 0.002 |
1 | Krishnasamy A, Bukkarapu K R. A comprehensive review of biodiesel property prediction models for combustion modeling studies[J]. Fuel, 2021, 302: 121085. |
2 | Athar M, Zaidi S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production[J]. J. Environ. Eng., 2020, 8(6): 104523. |
3 | Cao P G, Tremblay A Y, Dubé M A, et al. Effect of membrane pore size on the performance of a membrane reactor for biodiesel production[J]. Ind. Eng. Chem. Res., 2007, 46(1): 52-58. |
4 | Roosta A, Sabzpooshan I. Modeling the effects of cosolvents on biodiesel production[J]. Fuel, 2016, 186: 779-786. |
5 | Boocock D G B, Konar S K, Sidi H. Phase diagrams for oil/methanol/ether mixtures[J]. Journal of the American Oil Chemists’ Society, 1996, 73(10): 1247-1251. |
6 | Boocock D G B, Konar S K, Mao V, et al. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters[J]. Biomass and Bioenergy, 1996, 11(1): 43-50. |
7 | Lee M J, Kuo Y C, Lien P J, et al. Liquid-liquid equilibria for ternary mixtures containing vegetable oils, methanol, and cosolvents[J]. The Open Thermodynamics Journal, 2010, 4(1): 122-128. |
8 | Čerče T, Peter S, Weidner E. Biodiesel-transesterification of biological oils with liquid catalysts: thermodynamic properties of oil-methanol-amine mixtures[J]. Ind. Eng. Chem. Res., 2005, 44(25): 9535-9541. |
9 | Parida S, Sahu D K, Misra P K. Optimization of transesterification process by the application of ultrasound energy coupled with diesel as cosolvent[J]. J. Energy Inst., 2017, 90(4): 556-562. |
10 | Guan G Q, Sakurai N, Kusakabe K. Synthesis of biodiesel from sunflower oil at room temperature in the presence of various cosolvents[J]. Chem. Eng. J., 2009, 146(2): 302-306. |
11 | Asoodeh A, Eslami F, Sadrameli S M. Liquid-liquid equilibria of systems containing linseed oil biodiesel + methanol + glycerol: experimental data and thermodynamic modeling[J]. Fuel, 2019, 253: 460-473. |
12 | Machado G D, Castier M, Voll A P, et al. Ethanol and methanol Unifac subgroup parameter estimation in the prediction of the liquid-liquid equilibrium of biodiesel systems[J]. Fluid Phase Equilibria, 2019, 488: 79-86. |
13 | Tizvar R, McLean D D, Kates M, et al. Liquid–liquid equilibria of the methyl oleate–glycerol–hexane–methanol system[J]. Ind. Eng. Chem. Res., 2008, 47(2): 443-450. |
14 | Chiu C W, Goff M J, Suppes G J. Distribution of methanol and catalysts between biodiesel and glycerin phases[J]. AIChE J., 2005, 51(4): 1274-1278. |
15 | Andreatta A E, Casás L M, Hegel P, et al. Phase equilibria in ternary mixtures of methyl oleate, glycerol, and methanol[J]. Ind. Eng. Chem. Res., 2008, 47(15): 5157-5164. |
16 | Oliveira M B, Teles A R R, Queimada A J, et al. Phase equilibria of glycerol containing systems and their description with the cubic-plus-association (CPA) equation of state[J]. Fluid Phase Equilibria, 2009, 280(1/2): 22-29. |
17 | Noriega M A, Narváez P C. UNIFAC correlated parameters for liquid-liquid equilibrium prediction of ternary systems related to biodiesel production process[J]. Fuel, 2019, 249: 365-378. |
18 | Bazooyar B, Shaahmadi F, Anbaz M A, et al. Intelligent modelling and analysis of biodiesel/alcohol/glycerol liquid-liquid equilibria[J]. J. Mol. Liq., 2021, 322: 114972. |
19 | Zhou H, Lu H F, Liang B. Solubility of multicomponent systems in the biodiesel production by transesterification of Jatropha Curcas L. oil with methanol[J]. J. Chem. Eng. Data, 2010, 55(3): 1460. |
20 | Glisic S B, Orlović A M. Review of biodiesel synthesis from waste oil under elevated pressure and temperature: phase equilibrium, reaction kinetics, process design and techno-economic study[J]. Renew. Sust. Energ. Rev., 2014, 31: 708-725. |
21 | Albuquerque A A, Ng F T T, Danielski L, et al. Phase equilibrium modeling in biodiesel production by reactive distillation[J]. Fuel, 2020, 271: 117688. |
22 | Qiu Z Y, Zhao L N, Weatherley L. Process intensification technologies in continuous biodiesel production[J]. Chem. Eng. Process, 2010, 49(4): 323-330. |
23 | Segalen da Silva D I, Mafra M R, da Silva F R, et al. Liquid-liquid and vapor-liquid equilibrium data for biodiesel reaction-separation systems[J]. Fuel, 2013, 108: 269-276. |
24 | Vicente G, Martı́nez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems[J]. Bioresour. Technol., 2004, 92(3): 297-305. |
25 | Cao P G, Dubé M A, Tremblay A Y. Methanol recycling in the production of biodiesel in a membrane reactor[J]. Fuel, 2008, 87(6): 825-833. |
26 | Magnussen T, Rasmussen P, Fredenslund A. UNIFAC parameter table for prediction of liquid-liquid equilibriums[J]. Ind. & Eng. Chem. Process. Design & Development, 1981, 20(2): 331-339. |
27 | Gmehling J, Li J D, Schiller M. A modified UNIFAC model (2): Present parameter matrix and results for different thermodynamic properties[J]. Ind. Eng. Chem. Res., 1993, 32(1): 178-193. |
28 | Bessa L C B A, Ferreira M C, Abreu C R A, et al. A new UNIFAC parameterization for the prediction of liquid-liquid equilibrium of biodiesel systems[J]. Fluid Phase Equilibria, 2016, 425: 98-107. |
29 | Negi D S, Sobotka F, Kimmel T, et al. Liquid-liquid phase equilibrium in glycerol-methanol-methyl oleate and glycerol-monoolein-methyl oleate ternary systems[J]. Ind. Eng. Chem. Res., 2006, 45(10): 3693-3696. |
30 | Gerhard K, Jon V G, Jurgen K. The Biodiesel Handbook[M]. Champaign, Illinois: AOCS Press, 2005: 34-64. |
31 | Darnoko D, Cheryan M. Kinetics of palm oil transesterification in a batch reactor[J]. J. Am. Oil Chem. Soc., 2000, 77(12): 1263-1267. |
32 | Pisarello M L, Maquirriain M, Sacripanti Olalla P, et al. Biodiesel production by transesterification in two steps: kinetic effect or shift in the equilibrium conversion? [J]. Fuel Process. Technol., 2018, 181: 244-251. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[3] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[6] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[7] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[8] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[9] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[10] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[11] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[12] | Mengyu LI, Dongxiang WANG, Xiaoyang ZHENG, Guizhuan XU, Chaojun DU, Chun CHANG. Preparation and adsorption properties of crude glycerol bio-based polyurethane material [J]. CIESC Journal, 2022, 73(5): 2270-2278. |
[13] | Duotao PAN, Xudong WANG, Hongyan SHI, Zhilong XIU. Steady-state analysis and feedback control of continuous fermentation for bio-based 1, 3-propanediol [J]. CIESC Journal, 2022, 73(5): 2094-2100. |
[14] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[15] | Wenxin MEN, Qingshou PENG, Xia GUI. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts [J]. CIESC Journal, 2022, 73(4): 1472-1482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||