CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2452-2467.DOI: 10.11949/0438-1157.20220072
• Reviews and monographs • Previous Articles Next Articles
Chenyang ZHOU1,2(),Ying JIA1,Yuemin ZHAO1,Yong ZHANG3,Zhijie FU4,Yuqing FENG5,Chenlong DUAN1()
Received:
2022-01-03
Revised:
2022-03-02
Online:
2022-06-30
Published:
2022-06-05
Contact:
Chenlong DUAN
周晨阳1,2(),贾颖1,赵跃民1,张勇3,付芝杰4,冯昱清5,段晨龙1()
通讯作者:
段晨龙
作者简介:
周晨阳(1992—),男,博士,博士后,基金资助:
CLC Number:
Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective[J]. CIESC Journal, 2022, 73(6): 2452-2467.
周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
1 | 国务院. 《新时代的中国能源发展》白皮书[R]. 北京: 中华人民共和国国务院, 2020. |
China's State Council. Energy in China's New Era[R]. Beijing: China's State Council, 2020. | |
2 | 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211. |
Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211. | |
3 | Xia W C, Xie G Y, Peng Y L. Recent advances in beneficiation for low rank coals[J]. Powder Technology, 2015, 277: 206-221. |
4 | Meffe S, Perkson A, Trass O. Coal beneficiation and organic sulfur removal[J]. Fuel, 1996, 75(1): 25-30. |
5 | Mukherje A K, Bhattacharjee D, Mishra B K. Role of water velocity for efficient jigging of iron ore[J]. Minerals Engineering, 2006, 19(9): 952-959. |
6 | Ni C, Xie G Y, Liu B, et al. Effect of bubbles addition on teetered bed separation[J]. International Journal of Mining Science and Technology, 2015, 25(5): 835-841. |
7 | Cebeci Y, Ulusoy U, Sönmez İ. Determination of optimum washing conditions for a lignite coal based on ash and sulfur content[J]. Fuel, 2014, 123: 52-58. |
8 | Demirbaş A. Demineralization and desulfurization of coals via column froth flotation and different methods[J]. Energy Conversion and Management, 2002, 43(7): 885-895. |
9 | Duan C L, Zhou C Y, Dong L, et al. A novel dry beneficiation technology for pyrite recovery from high sulfur gangue[J]. Journal of Cleaner Production, 2018, 172: 2475-2484. |
10 | Fan X C, Zhou C Y, Zhao Y M, et al. Flow pattern transition and coal beneficiation in gas solid fluidized bed with novel secondary distributor[J]. Advanced Powder Technology, 2018, 29: 1255-1264. |
11 | Yu X D, Luo Z F, Gan D Q. Desulfurization of high sulfur fine coal using a novel combined beneficiation process[J]. Fuel, 2019, 254: 115603. |
12 | Chagwedera K M, Bada S O, Falcon R M S. Evaluation of alternative solid media for coal beneficiation using an air dense-medium fluidized bed[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118(8): 883-890. |
13 | Lv B, Luo Z F, Zhang B. Fluidization and separation characteristics of gas-solid separation fluidized bed with wet coal[J]. Fuel, 2018, 219: 492-501. |
14 | Zhu G Q, Zhang B, Zhao P F, et al. Upgrading low-quality oil shale using high-density gas-solid fluidized bed[J]. Fuel, 2019, 252: 666-674. |
15 | Mak C, Choung J, Beauchamp R, et al. Potential of air dense medium fluidized bed separation of mineral matter for mercury rejection from Alberta sub-bituminous coal[J]. International Journal of Coal Preparation and Utilization, 2008, 28(2): 115-132. |
16 | Azimi E, Karimipour S, Xu Z, et al. Statistical analysis of coal beneficiation performance in a continuous air dense medium fluidized bed separator[J]. International Journal of Coal Preparation and Utilization, 2017, 37(1): 12-32. |
17 | Choung J, Mak C, Xu Z. Fine coal beneficiation using an air dense medium fluidized bed[J]. International Journal of Coal Preparation, 2006, 26(1): 1-15. |
18 | Sahu A K, Tripathy A, Biswal S K. Study on particle dynamics in different cross sectional shapes of air dense medium fluidized bed separator[J]. Fuel, 2013, 111: 472-477. |
19 | Sahu A K, Tripathy A, Biswal S K, et al. Stability study of an air dense medium fluidized bed separator for beneficiation of high-ash Indian coal[J]. International Journal of Coal Preparation and Utilization, 2011, 31(3/4): 127-148. |
20 | Mohanta S, Rao C S, Daram A B, et al. Air dense medium fluidized bed for dry beneficiation of coal: technological challenges for future[J]. Particulate Science and Technology, 2013, 31(1): 16-27. |
21 | Mohanta S, Chakraborty S, Meikap B C. Influence of coal feed size on the performance of air dense medium fluidized bed separator used for coal beneficiation[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10865-10871. |
22 | Mohanta S, Chakraborty S, Meikap B C. Optimization process of an air dense medium fluidized bed separator for treating high-ash non-coking Indian coal[J]. Mineral Processing and Extractive Metallurgy Review, 2013, 34(4): 240-248. |
23 | Oshitani J, Kawahito T, Yoshida M, et al. Improvement of dry float-sink separation of smaller sized spheres by reducing the fluidized bed height[J]. Advanced Powder Technology, 2012, 23(1): 27-30. |
24 | Oshitani J, Isei Y, Yoshida M, et al. Influence of air bubble size on float-sink of spheres in a gas-solid fluidized bed[J]. Advanced Powder Technology, 2012, 23(1): 120-123. |
25 | Oshitani J, Ohnishi M, Yoshida M, et al. Dry separation of particulate iron ore using density-segregation in a gas-solid fluidized bed[J]. Advanced Powder Technology, 2013, 24(2): 554-559. |
26 | Yoshida M, Oshitani J, Tani K, et al. Fluidized bed medium separation (FBMS) using the particles with different hydrophilic and hydrophobic properties[J]. Advanced Powder Technology, 2011, 22(1): 108-114. |
27 | Higashida K, Rai K, Yoshimori W, et al. Dynamic vertical forces working on a large object floating in gas-fluidized bed: discrete particle simulation and Lagrangian measurement[J]. Chemical Engineering Science, 2016, 151: 105-115. |
28 | Zhao Y M, Li G M, Luo Z F, et al. Industrial application of a modularized dry-coal-beneficiation technique based on a novel air dense medium fluidized bed[J]. International Journal of Coal Preparation and Utilization, 2017, 37(1): 44-57. |
29 | 周晨阳. Geldart A类加重质气固分选流化床的密度调控研究[D]. 徐州: 中国矿业大学, 2019. |
Zhou C Y. Density adjustment in gas-solid fluidized bed for beneficiation using geldart A dense medium[D]. Xuzhou: China University of Mining and Technology, 2019. | |
30 | Jiang Y, Chen Z Q, Shao H N, et al. The effect of a porous medium on fluidization characteristics in air dense medium fluidized bed[J]. Powder Technology, 2016, 301: 1227-1234. |
31 | Lv B, Luo Z F, Zhang B, et al. Effect of the secondary air distribution layer on separation density in a dense-phase gas-solid fluidized bed[J]. International Journal of Mining Science and Technology, 2015, 25(6): 969-973. |
32 | Wei L B, Chen Q R. Calculation of drag force on an object settling in gas-solid fluidized beds[J]. Particulate Science and Technology, 2001, 19(3): 229-238. |
33 | Zhou E H, Zhao Y M, Duan C L, et al. Fluidization characteristics and fine coal dry beneficiation using a pronation-grille baffle dense phase medium fluidized bed[J]. Fuel, 2016, 185: 555-564. |
34 | Zhou E H, Zhang Y D, Zhao Y M, et al. Characteristic gas velocity and fluidization quality evaluation of vibrated dense medium fluidized bed for fine coal separation[J]. Advanced Powder Technology, 2018, 29(4): 985-995. |
35 | Ge W, Lu L Q, Liu S W, et al. Multiscale discrete supercomputing - a game changer for process simulation? [J]. Chemical Engineering & Technology, 2015, 38(4): 575-584. |
36 | 张亚东. 基于多信号耦合分析的振动分选流化床中气泡动态行为特性研究[D]. 徐州: 中国矿业大学, 2020. |
Zhang Y D. Study on the buble dynamic behavior in vibrating separation fluidized bed based on multi-signal coupling analysis[D]. Xuzhou: China University of Mining and Technology, 2020. | |
37 | Dong L, Zhao Y M, Peng L P, et al. Characteristics of pressure fluctuations and fine coal preparation in gas-vibro fluidized bed[J]. Particuology, 2015, 21: 146-153. |
38 | Zhang Y D, Zhang J B, Zhao Y M, et al. Investigations on dynamics of bubble in a 2D vibrated fluidized bed using pressure drop signal and high-speed image analysis[J]. Chemical Engineering Journal, 2020, 395: 125129. |
39 | 段晨龙,刘锡波,周晨阳,等.基于电容层析成像技术(ECT)对干法重介流化床中分离机制的研究[J]. 煤炭学报, 2022, 47(2): 945-957. |
Duan C L, Liu X B, Zhou C Y, et al. Research progress of electrical capacitance tomography application in dry dense medium separation fluidized bed[J]. Journal of China Coal Society, 2022, 47(2): 945-957. | |
40 | Liu X B, Fan X C, Zhao Y M, et al. Particles movement behavior and apparent density in gas-solid fluidized bed as determined by an electronic dynamometer and electrical capacitance tomography[J]. Chemical Engineering Journal, 2022, 429: 132463. |
41 | Sun Z N, Han B W, Bai T Z, et al. Comparison of hydrodynamics in a gas-solids fluidized bed with binary particle systems for dry coal beneficiation[J]. Chemical Engineering Science, 2022, 247: 117028. |
42 | Han B W. Bubble dynamics and bed expansion for single-component and binary gas-solid fluidization systems[D]. London: Western University, 2017. |
43 | Bai T Z. Bubble dynamics and dense phase composition in 2D binary gas-solid fluidized bed[D]. London: Western University, 2018. |
44 | Wang Q G, Feng Y Q, Lu J F, et al. Numerical study of particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model: influence of coal particle size and density[J]. Chemical Engineering Journal, 2015, 260: 240-257. |
45 | 尹炜迪, 王庆功, 吕俊复, 等. 选煤流化床内气固流动和颗粒分层的数值模拟[J]. 中国矿业大学学报, 2019(2):430-436. |
Yin W D, Wang Q G, Lv J F, et al. Modelling of the gas-solid flow and particle segregation behavior in coal beneficiation fluidized beds[J]. Journal of China University of Mining & Technology, 2019(2):430-436. | |
46 | Wang Q G, Yang H R, Feng Y Q, et al. Numerical study of the effect of operation parameters on particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model[J]. Chemical Engineering Science, 2015, 131: 256-270. |
47 | 王庆功. 非均一颗粒在浓相流化床系统中的流动行为研究[D]. 北京: 清华大学, 2015. |
Wang Q G. Flow behavior of multi-size particles in dense fluidized bed systems[D]. Beijing: Tsinghua University, 2015. | |
48 | Zhang Y, Zhao Y M, Lu L Q, et al. Assessment of polydisperse drag models for the size segregation in a bubbling fluidized bed using discrete particle method[J]. Chemical Engineering Science, 2017, 160: 106-112. |
49 | 张勇. 气固分选流化床中多组分颗粒分层与混合的数值模拟研究[D]. 徐州: 中国矿业大学, 2019. |
Zhang Y. Numerical study of the segregation and mixing of polydisperse particles in gas-solid separating fluidized beds[D]. Xuzhou: China University of Mining and Technology, 2019. | |
50 | 付芝杰. 气固分选流化床两相分布及密度调控机制研究[D]. 徐州: 中国矿业大学, 2017. |
Fu Z J. Research on the mechanism of two-phase distribution and density regulation of separating gas-solid fluidized bed[D]. Xuzhou: China University of Mining and Technology, 2017. | |
51 | Fu Z J, Zhu J, Barghi S, et al. On the two-phase theory of fluidization for Geldart B and D particles[J]. Powder Technology, 2019, 354: 64-70. |
52 | Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE) - The EMMS paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
53 | Liu X H, Guo L, Xia Z J, et al. Harnessing the power of virtual reality[J]. Chemical Engineering Progress, 2012, 108(7): 28-33. |
54 | Zhang Y, Zhao Y M, Gao Z L, et al. Experimental and Eulerian-Lagrangian-Lagrangian study of binary gas-solid flow containing particles of significantly different sizes[J]. Renewable Energy, 2019, 136: 193-201. |
55 | Queteschiner D, Lichtenegger T, Pirker S, et al. Multi-level coarse-grain model of the DEM[J]. Powder Technology, 2018, 338: 614-624. |
56 | Kanjilal S, Schneiderbauer S. A revised coarse-graining approach for simulation of highly poly-disperse granular flows[J]. Powder Technology, 2021, 385: 517-527. |
57 | Zhou C Y, Dong L, Zhao Y M, et al. Studies on bed density in a gas-vibro fluidized bed for coal cleaning[J]. ACS Omega, 2019, 4(7): 12817-12826. |
58 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
59 | Zhou E H, Zhang Y D, Zhao Y M, et al. Collaborative optimization of vibration and gas flow on fluidization quality and fine coal segregation in a vibrated dense medium fluidized bed[J]. Powder Technology, 2017, 322: 497-509. |
60 | Zhou E H, Zhang Y D, Zhao Y M, et al. Effect of vibration energy on fluidization and 1-6 mm coal separation in a vibrated dense medium fluidized bed[J]. Separation Science and Technology, 2018, 53(14): 2297-2313. |
61 | Zhang Y D, Zhang X Y, Zhao Y M, et al. Bubble growth obtained from pressure fluctuation in vibration separation fluidized bed using wavelet analysis[J]. Advanced Powder Technology, 2020, 31(8): 3287-3296. |
62 | Dong L, Zhao Y M, Duan C L, et al. Characteristics of bubble and fine coal separation using active pulsing air dense medium fluidized bed[J]. Powder Technology, 2014, 257: 40-46. |
63 | Dong L, Zhou E H, Peng L P, et al. Analysis of interaction between bubbles and particles in a dense gas-vibro fluidized bed[J]. Chemical Engineering Science, 2017, 161: 265-273. |
64 | Li Y J, Zhou C Y, Lv G N, et al. Prediction of minimum fluidization velocity in pulsed gas-solid fluidized bed[J]. Chemical Engineering Journal, 2021, 417: 127965. |
65 | Dong L, Zhu F L, Li Y J, et al. Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation[J]. Chemical Engineering Science, 2021, 234: 116459. |
66 | Li Y J, Zhou C Y, Zhang G S, et al. Gas–solid distribution theory in a pulsed fluidized bed based on the intermediate phase[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3228-3238. |
67 | Dong L, Zhang B, Zhang Y, et al. Kinetic characteristics of the particles in a dense-phase pulsed fluidized bed for dry beneficiation[J]. The Canadian Journal of Chemical Engineering, 2017, 95(6): 1133-1140. |
68 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders ( Ⅰ ) : Homogeneous expansion[J]. Powder Technology, 1980, 26(1): 35-46. |
69 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅱ): Voidage of the dense phase in bubbling beds[J]. Powder Technology, 1980, 26(1): 47-55. |
70 | 赵跃民, 李功民, 骆振福, 等. 模块式干法重介质流化床选煤理论与工业应用[J]. 煤炭学报, 2014, 39(8): 1566-1571. |
Zhao Y M, Li G M, Luo Z F, et al. Theory of modularized dry coal beneficiation and its application based on an air dense medium fluidized bed[J]. Journal of China Coal Society, 2014, 39(8): 1566-1571. | |
71 | Zhou C Y, Liu X B, Zhao Y M, et al. Recent progress and potential challenges in coal upgrading via gravity dry separation technologies[J]. Fuel, 2021, 305: 121430. |
72 | Fu Z J, Zhu J, Barghi S, et al. Dry coal beneficiation by the semi-industrial air dense medium fluidized bed with binary mixtures of magnetite and fine coal particles[J]. Fuel, 2019, 243: 509-518. |
73 | Luo Z F, Zhao Y M, Tao X X, et al. Progress in dry coal cleaning using air-dense medium fluidized beds[J]. International Journal of Coal Preparation and Utilization, 2003, 23(1/2): 13-20. |
74 | Luo Z F, Chen Q R. Dry beneficiation technology of coal with an air dense-medium fluidized bed[J]. International Journal of Mineral Processing, 2001, 63(3): 167-175. |
[1] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[2] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[3] | Hao CHEN, Yijuan TIAN, Xuejun QUAN, Ziwen JIANG, Gang LI. Decomposition behaviour of chromite in the HCl-HF system [J]. CIESC Journal, 2023, 74(3): 1161-1174. |
[4] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[5] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[6] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[7] | Xinxin ZENG, Huijuan BAI, Juan YU, Pei HUANG, Chao YANG, Junbo XU. Mesoscale structure and regulation of polyimide resin matrix composites for hypersonic aerospace [J]. CIESC Journal, 2022, 73(6): 2352-2369. |
[8] | Fan WANG, Yanbo LIU, Kangli LI, Li TONG, Meitang JIN, Weiwei TANG, Mingyang CHEN, Junbo GONG. Research progress on mesoscale nucleation process in solution crystallization [J]. CIESC Journal, 2022, 73(6): 2318-2333. |
[9] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
[10] | Xiaoping GUAN, Ning YANG. Multiphase drag and population balance models based on mesoscale stability condition [J]. CIESC Journal, 2022, 73(6): 2427-2437. |
[11] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
[12] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
[13] | Xiaogang SHI, Chengxiu WANG, Jinsen GAO, Xingying LAN. Numerical simulation study on influence of mesoscale structure in riser reactor [J]. CIESC Journal, 2022, 73(6): 2708-2721. |
[14] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[15] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 433
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||