CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2677-2689.DOI: 10.11949/0438-1157.20220140
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Bo MENG1(),Yanping LIU1,Xinke JIANG1,Yifan HAN1,2()
Received:
2022-01-23
Revised:
2022-03-08
Online:
2022-06-30
Published:
2022-06-05
Contact:
Yifan HAN
通讯作者:
韩一帆
作者简介:
孟博(1983—),男,博士研究生,副教授,基金资助:
CLC Number:
Bo MENG, Yanping LIU, Xinke JIANG, Yifan HAN. The scale regulation of Fe5C2-MnO x and their catalytic performance for the preparation of olefins from syngas[J]. CIESC Journal, 2022, 73(6): 2677-2689.
孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 比表面积/(m2?g-1) | 孔容/ (m3?g-1) | 孔径/nm | 平均尺寸/nm |
---|---|---|---|---|
Fe(纯铁) | 91.04 | 0.29 | 8.69 | 65.91 |
GC | 158.61 | 0.33 | 6.03 | 37.83 |
CC-Fe | 120.29 | 0.27 | 6.62 | 49.88 |
CC-Mn | 147.98 | 0.36 | 7.19 | 40.55 |
JH-hd | 124.47 | 0.27 | 6.45 | 48.21 |
JH-dh | 98.76 | 0.30 | 9.19 | 60.76 |
Mn(纯锰) | 102.31 | 0.27 | 7.61 | 58.64 |
Table 1 Texture properties of the Fe-Mn catalysts
催化剂 | 比表面积/(m2?g-1) | 孔容/ (m3?g-1) | 孔径/nm | 平均尺寸/nm |
---|---|---|---|---|
Fe(纯铁) | 91.04 | 0.29 | 8.69 | 65.91 |
GC | 158.61 | 0.33 | 6.03 | 37.83 |
CC-Fe | 120.29 | 0.27 | 6.62 | 49.88 |
CC-Mn | 147.98 | 0.36 | 7.19 | 40.55 |
JH-hd | 124.47 | 0.27 | 6.45 | 48.21 |
JH-dh | 98.76 | 0.30 | 9.19 | 60.76 |
Mn(纯锰) | 102.31 | 0.27 | 7.61 | 58.64 |
催化剂 | 晶相含量①/% | ||||
---|---|---|---|---|---|
MnFe2O4 | Fe5C2 | Fe3C | Fe2C | MnO | |
GC | 17.9 | 55.2 | 26.9 | — | — |
CC-Fe | 17.1 | 15.9 | 62.0 | 5.0 | — |
CC-Mn | 31.7 | 20.3 | 31.7 | — | 16.3 |
JH-hd | 20.9 | 9.3 | 69.8 | — | — |
JH-dh | 37.9 | — | 38.6 | — | 23.5 |
Table 2 Crystal phase content of Fe-Mn catalysts prepared by different methods
催化剂 | 晶相含量①/% | ||||
---|---|---|---|---|---|
MnFe2O4 | Fe5C2 | Fe3C | Fe2C | MnO | |
GC | 17.9 | 55.2 | 26.9 | — | — |
CC-Fe | 17.1 | 15.9 | 62.0 | 5.0 | — |
CC-Mn | 31.7 | 20.3 | 31.7 | — | 16.3 |
JH-hd | 20.9 | 9.3 | 69.8 | — | — |
JH-dh | 37.9 | — | 38.6 | — | 23.5 |
催化剂 | 晶粒尺寸①/nm | |
---|---|---|
Fe5C2 | Fe3C | |
GC | 19.69 | 28.44 |
CC-Fe | 20.80 | 16.82 |
CC-Mn | 26.68 | 27.12 |
JH-hd | 27.14 | 21.68 |
JH-dh | — | 26.79 |
Table 3 Grain sizes of Fe-Mn catalysts prepared by different methods
催化剂 | 晶粒尺寸①/nm | |
---|---|---|
Fe5C2 | Fe3C | |
GC | 19.69 | 28.44 |
CC-Fe | 20.80 | 16.82 |
CC-Mn | 26.68 | 27.12 |
JH-hd | 27.14 | 21.68 |
JH-dh | — | 26.79 |
催化剂 | CO conversion/% | FTY① | CO2 selectivity/% | Hydrocarbon distribution②/% | α | O/P③ | |||
---|---|---|---|---|---|---|---|---|---|
CH4 | C5+ | ||||||||
GC | 20.07 | 4.37 | 6.37 | 13.28 | 17.45 | 38.60 | 24.29 | 0.54 | 2.32 |
CC-Fe | 15.49 | 2.77 | 22.97 | 17.55 | 14.48 | 20.11 | 19.71 | 0.71 | 1.47 |
CC-Mn | 14.36 | 2.23 | 33.08 | 9.49 | 14.19 | 27.95 | 15.28 | 0.53 | 2.25 |
JH-hd | 8.41 | 1.55 | 20.84 | 26.13 | 13.44 | 23.62 | 15.97 | 0.58 | 1.99 |
JH-dh | 4.63 | 0.89 | 17.23 | 21.56 | 14.14 | 26.08 | 20.98 | 0.55 | 2.04 |
Table 4 Summary of STO performance for Fe-Mn catalysts prepared by different methods
催化剂 | CO conversion/% | FTY① | CO2 selectivity/% | Hydrocarbon distribution②/% | α | O/P③ | |||
---|---|---|---|---|---|---|---|---|---|
CH4 | C5+ | ||||||||
GC | 20.07 | 4.37 | 6.37 | 13.28 | 17.45 | 38.60 | 24.29 | 0.54 | 2.32 |
CC-Fe | 15.49 | 2.77 | 22.97 | 17.55 | 14.48 | 20.11 | 19.71 | 0.71 | 1.47 |
CC-Mn | 14.36 | 2.23 | 33.08 | 9.49 | 14.19 | 27.95 | 15.28 | 0.53 | 2.25 |
JH-hd | 8.41 | 1.55 | 20.84 | 26.13 | 13.44 | 23.62 | 15.97 | 0.58 | 1.99 |
JH-dh | 4.63 | 0.89 | 17.23 | 21.56 | 14.14 | 26.08 | 20.98 | 0.55 | 2.04 |
1 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度: 复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
2 | 程道建. 双金属纳米催化剂介尺度结构:理论和实验研究[C]// 2015年中国化工学会年会. 2015: 2193. |
Cheng D J. Mesoscale structure of bimetallic nanocatalysts: theoretical and experimental studies[C]// 2015 CIESC Annual Meeting. 2015: 2193. | |
3 | Li H, Zeng X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets[J]. ACS Nano, 2012, 6(3): 2401-2409. |
4 | Zhu C Q, Li H, Huang Y F, et al. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant[J]. Physical Review Letters, 2013, 110(12): 126101. |
5 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
6 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro- /nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
7 | Rofer-Depoorter C K. A comprehensive mechanism for the Fischer-Tropsch synthesis[J]. Chemical Reviews, 1981, 81(5): 447-474. |
8 | Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. Journal of Catalysis, 1992, 137(1): 212-224. |
9 | Carballo J M G, Finocchio E, García-Rodriguez S, et al. Insights into the deactivation and reactivation of Ru/TiO2 during Fischer-Tropsch synthesis[J]. Catalysis Today, 2013, 214: 2-11. |
10 | Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem.Rev., 2007, 107(5): 1692-1744. |
11 | 董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656. |
Dong Z C, Wu Y, Zhang B F, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656. | |
12 | 夏明, 李江兵. 费托合成制低碳烯烃铁基催化剂研究进展[J]. 化工技术与开发, 2012, 41(2): 18-23. |
Xia M, Li J B. Research advances in making light olefins for iron-based Fischer-Tropsch synthesis catalysts[J]. Technology & Development of Chemical Industry, 2012, 41(2): 18-23. | |
13 | Zhang Q H, Kang J C, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem, 2010, 2(9): 1030-1058. |
14 | Lohitharn N, Goodwin J G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: investigation at the active site level using SSITKA[J]. Journal of Catalysis, 2008, 257(1): 142-151. |
15 | Barrault J, Renard C. Selective hydrocondensation of carbon monoxide into light olefins with iron-manganese catalysts[J]. Applied Catalysis, 1985, 14: 133-143. |
16 | Cuong L T, Dung N D, Tuan T Q, et al. In situ observation of phase transformation in iron carbide nanocrystals[J]. Micron, 2018, 104: 61-65. |
17 | 赵华博, 马丁. χ-Fe5C2: 结构, 合成与催化性质调控[J]. 物理化学学报, 2020, 36(1): 32-41. |
Zhao H B, Ma D. χ -Fe5C2: structure, synthesis, and tuning of catalytic properties[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 32-41. | |
18 | Li Y, Li Y P, Shi Q, et al. Novel hollow microspheres Mn x Co3- x O4 (x = 1, 2) with remarkable performance for low-temperature selective catalytic reduction of NO with NH3 [J]. Journal of Sol-Gel Science and Technology, 2017, 81(2): 576-585. |
19 | Tao Z C, Yang Y, Wan H J, et al. Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst[J]. Catalysis Letters, 2007, 114(3/4): 161-168. |
20 | Song W L, Zhang B, Chen L F, et al. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production[J]. Catalysis Science & Technology, 2016, 6(10): 3559-3567. |
21 | Meng B, Zhao Z B, Chen Y S, et al. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia[J]. Chemical Communications (Cambridge, England), 2014, 50(82): 12396-12399. |
22 | Larbi T, Amara A, Said L B, et al. A study of optothermal and AC impedance properties of Cr-doped Mn3O4 sprayed thin films[J]. Materials Research Bulletin, 2015, 70: 254-262. |
23 | Buciuman F, Patcas F, Craciun R, et al. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185-190. |
24 | Liu S L, Ji J, Yu Y, et al. Facile synthesis of amorphous mesoporous manganese oxides for efficient catalytic decomposition of ozone[J]. Catalysis Science & Technology, 2018, 8(16): 4264-4273. |
25 | Zuo J, Xu C Y, Liu Y P, et al. Crystallite size effects on the Raman spectra of Mn3O4 [J]. Nanostructured Materials, 1998, 10(8): 1331-1335. |
26 | Tao Z C, Yang Y, Zhang C H, et al. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Natural Gas Chemistry, 2007, 16(3): 278-285. |
27 | Shi B F, Zhang Z P, Liu Y T, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. Journal of Catalysis, 2020, 381: 150-162. |
28 | Han W F, Wang L Y, Li Z, et al. Γ-Fe2O3 as the precursor of iron based catalyst prepared by solid-state reaction at room temperature for Fischer-Tropsch to olefins[J]. Applied Catalysis A: General, 2019, 572: 158-167. |
29 | Zhang M H, Ren J, Yu Y Z. Insights into the hydrogen coverage effect and the mechanism of Fischer-Tropsch to olefins process on Fe5C2 (510)[J]. ACS Catalysis, 2020, 10(1): 689-701. |
30 | Herranz T, Rojas S, Pérez-Alonso F J, et al. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. Journal of Catalysis, 2006, 243(1): 199-211. |
31 | de Smit E, Cinquini F, Beale A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μC [J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
32 | Zhang Y L, Fu D L, Liu X L, et al. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem, 2018, 10(6): 1272-1276. |
33 | Zhu C, Zhang M W, Huang C, et al. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer-Tropsch synthesis to light olefins[J]. New Journal of Chemistry, 2018, 42(4): 2413-2421. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||