CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1658-1672.DOI: 10.11949/0438-1157.20211567
• Process system engineering • Previous Articles Next Articles
Shujun ZHANG(),Shihui WANG,Xin ZHANG,Xu JI,Yiyang DAI,Yagu DANG,Li ZHOU()
Received:
2021-11-03
Revised:
2022-01-19
Online:
2022-04-25
Published:
2022-04-05
Contact:
Li ZHOU
通讯作者:
周利
作者简介:
张淑君(1997—),女,硕士研究生,基金资助:
CLC Number:
Shujun ZHANG, Shihui WANG, Xin ZHANG, Xu JI, Yiyang DAI, Yagu DANG, Li ZHOU. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit[J]. CIESC Journal, 2022, 73(4): 1658-1672.
张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
Add to citation manager EndNote|Ris|BibTeX
氢源供氢 | |||||||||
---|---|---|---|---|---|---|---|---|---|
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 44.53 | 95.57 | 1.49 | 1.26 | 0.87 | 0.75 | 0.05 | 0 | 2 |
DHT-2 | 274.43 | 97.38 | 0.88 | 0.74 | 0.52 | 0.45 | 0.03 | 0 | 2 |
GHT | 163.27 | 97.65 | 0.80 | 0.67 | 0.47 | 0.40 | 0.02 | 0 | 2 |
KHT-1 | 37.62 | 95.30 | 1.58 | 1.34 | 0.93 | 0.80 | 0.05 | 0 | 2 |
KHT-2 | 60.32 | 99.01 | 0.34 | 0.28 | 0.19 | 0.05 | 0.01 | 0 | 2 |
氢阱进口 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 990.53 | 87.60 | 6.59 | 3.41 | 1.61 | 0.50 | 0.24 | 0.05 | 6.72 |
DHT-2 | 1004.5 | 90.00 | 5.21 | 2.75 | 1.34 | 0.47 | 0.19 | 0.04 | 7.00 |
GHT | 811.8 | 89.32 | 5.62 | 2.94 | 1.41 | 0.46 | 0.21 | 0.04 | 2.70 |
KHT-1 | 60.70 | 92.23 | 3.58 | 2.17 | 1.20 | 0.68 | 0.12 | 0.02 | 3.83 |
KHT-2 | 83.43 | 95.75 | 2.14 | 1.18 | 0.60 | 0.25 | 0.07 | 0.01 | 5.45 |
高分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力 /MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 797.50 | 86.00 | 8.28 | 3.92 | 1.25 | 0 | 0 | 0.55 | 5.00 |
DHT-2 | 753.00 | 91.00 | 5.14 | 2.30 | 0.66 | 0.35 | 0.14 | 0.41 | 6.40 |
GHT | 725.00 | 83.00 | 7.20 | 4.40 | 3.10 | 1.10 | 0.60 | 0.60 | 2.00 |
KHT-1 | 45.50 | 91.70 | 1.84 | 2.86 | 1.99 | 0.70 | 0.55 | 0.36 | 3.00 |
KHT-2 | 61.30 | 87.80 | 6.69 | 2.31 | 1.26 | 0.94 | 0.60 | 0.40 | 4.80 |
低分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 36.00 | 52.30 | 8.08 | 13.52 | 10.80 | 8.22 | 5.98 | 1.10 | 1.1 |
DHT-2 | 43.40 | 50.31 | 16.71 | 11.51 | 8.71 | 7.28 | 3.78 | 1.70 | 1.2 |
GHT | 19.80 | 42.32 | 20.51 | 15.02 | 9.21 | 8.56 | 2.58 | 1.80 | 1.0 |
KHT-1 | 5.20 | 35.21 | 32.36 | 8.64 | 9.73 | 7.90 | 4.66 | 1.50 | 1.0 |
KHT-2 | 5.60 | 67.60 | 10.65 | 8.36 | 5.98 | 4.67 | 0.94 | 1.80 | 1.0 |
Table 1 Detailed information of related streams in the hydrogen network
氢源供氢 | |||||||||
---|---|---|---|---|---|---|---|---|---|
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 44.53 | 95.57 | 1.49 | 1.26 | 0.87 | 0.75 | 0.05 | 0 | 2 |
DHT-2 | 274.43 | 97.38 | 0.88 | 0.74 | 0.52 | 0.45 | 0.03 | 0 | 2 |
GHT | 163.27 | 97.65 | 0.80 | 0.67 | 0.47 | 0.40 | 0.02 | 0 | 2 |
KHT-1 | 37.62 | 95.30 | 1.58 | 1.34 | 0.93 | 0.80 | 0.05 | 0 | 2 |
KHT-2 | 60.32 | 99.01 | 0.34 | 0.28 | 0.19 | 0.05 | 0.01 | 0 | 2 |
氢阱进口 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 990.53 | 87.60 | 6.59 | 3.41 | 1.61 | 0.50 | 0.24 | 0.05 | 6.72 |
DHT-2 | 1004.5 | 90.00 | 5.21 | 2.75 | 1.34 | 0.47 | 0.19 | 0.04 | 7.00 |
GHT | 811.8 | 89.32 | 5.62 | 2.94 | 1.41 | 0.46 | 0.21 | 0.04 | 2.70 |
KHT-1 | 60.70 | 92.23 | 3.58 | 2.17 | 1.20 | 0.68 | 0.12 | 0.02 | 3.83 |
KHT-2 | 83.43 | 95.75 | 2.14 | 1.18 | 0.60 | 0.25 | 0.07 | 0.01 | 5.45 |
高分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力 /MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 797.50 | 86.00 | 8.28 | 3.92 | 1.25 | 0 | 0 | 0.55 | 5.00 |
DHT-2 | 753.00 | 91.00 | 5.14 | 2.30 | 0.66 | 0.35 | 0.14 | 0.41 | 6.40 |
GHT | 725.00 | 83.00 | 7.20 | 4.40 | 3.10 | 1.10 | 0.60 | 0.60 | 2.00 |
KHT-1 | 45.50 | 91.70 | 1.84 | 2.86 | 1.99 | 0.70 | 0.55 | 0.36 | 3.00 |
KHT-2 | 61.30 | 87.80 | 6.69 | 2.31 | 1.26 | 0.94 | 0.60 | 0.40 | 4.80 |
低分气 | |||||||||
单元 | 流量/(mol/s) | 组成/%(mol) | 压力/ MPa | ||||||
H2 | C1 | C2 | C3 | C4 | C5 | H2S | |||
DHT-1 | 36.00 | 52.30 | 8.08 | 13.52 | 10.80 | 8.22 | 5.98 | 1.10 | 1.1 |
DHT-2 | 43.40 | 50.31 | 16.71 | 11.51 | 8.71 | 7.28 | 3.78 | 1.70 | 1.2 |
GHT | 19.80 | 42.32 | 20.51 | 15.02 | 9.21 | 8.56 | 2.58 | 1.80 | 1.0 |
KHT-1 | 5.20 | 35.21 | 32.36 | 8.64 | 9.73 | 7.90 | 4.66 | 1.50 | 1.0 |
KHT-2 | 5.60 | 67.60 | 10.65 | 8.36 | 5.98 | 4.67 | 0.94 | 1.80 | 1.0 |
单元 | 间距/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
CCR | 500 | 680 | 1000 | 1150 | 1280 |
H2 Plant | 250 | 430 | 1250 | 1400 | 1150 |
DHT-1 | 0 | 180 | 890 | 1000 | 850 |
DHT-2 | 180 | 0 | 700 | 820 | 700 |
GHT | 890 | 700 | 0 | 250 | 400 |
KHT-1 | 1000 | 820 | 250 | 0 | 150 |
KHT-2 | 850 | 700 | 400 | 150 | 0 |
PSA | 480 | 300 | 510 | 760 | 910 |
Table 2 The pipe distance between the units in the case
单元 | 间距/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
CCR | 500 | 680 | 1000 | 1150 | 1280 |
H2 Plant | 250 | 430 | 1250 | 1400 | 1150 |
DHT-1 | 0 | 180 | 890 | 1000 | 850 |
DHT-2 | 180 | 0 | 700 | 820 | 700 |
GHT | 890 | 700 | 0 | 250 | 400 |
KHT-1 | 1000 | 820 | 250 | 0 | 150 |
KHT-2 | 850 | 700 | 400 | 150 | 0 |
PSA | 480 | 300 | 510 | 760 | 910 |
单元 | ||
---|---|---|
DHT-1 | 87.60 | 0.15 |
DHT-2 | 90.00 | 0.15 |
GHT | 86.83 | 0.15 |
KHT-1 | 92.23 | 0.15 |
KHT-2 | 89.50 | 0.15 |
Table 3 Concentration constraint of the inlet stream of the hydrogen sink
单元 | ||
---|---|---|
DHT-1 | 87.60 | 0.15 |
DHT-2 | 90.00 | 0.15 |
GHT | 86.83 | 0.15 |
KHT-1 | 92.23 | 0.15 |
KHT-2 | 89.50 | 0.15 |
输入变量 | 下限 | 上限 |
---|---|---|
157.48 | 236.22 | |
0.62 | 0.94 | |
47.49 | 71.24 | |
39.68 | 59.52 | |
29.68 | 44.53 | |
24.37 | 36.56 | |
13.12 | 19.68 | |
100.00 | 250.00 |
Table 4 Input variable range of absorption tower of light hydrocarbon recovery unit
输入变量 | 下限 | 上限 |
---|---|---|
157.48 | 236.22 | |
0.62 | 0.94 | |
47.49 | 71.24 | |
39.68 | 59.52 | |
29.68 | 44.53 | |
24.37 | 36.56 | |
13.12 | 19.68 | |
100.00 | 250.00 |
装置 | 输出变量 | RMSE | R2 |
---|---|---|---|
吸收塔 | 5.40×10-3 | 0.99 | |
8.60×10-3 | |||
1.28×10-2 | |||
1.39×10-1 | |||
2.01×10-1 | |||
脱乙烷塔 | 3.07×10-9 | 0.99 | |
2.66×10-4 | |||
1.29×10-6 | |||
3.01×10-8 | |||
2.94×10-9 | |||
1.21×10-1 | |||
4.50×10-1 | |||
脱丁烷塔 | 4.27×10-8 | 0.99 | |
1.82×10-8 | |||
1.44×10-5 | |||
3.32×10-8 | |||
4.29×10-9 | |||
1.18×10-0 | |||
3.31×10-0 |
Table 5 Validation results of light hydrocarbon recovery unit model
装置 | 输出变量 | RMSE | R2 |
---|---|---|---|
吸收塔 | 5.40×10-3 | 0.99 | |
8.60×10-3 | |||
1.28×10-2 | |||
1.39×10-1 | |||
2.01×10-1 | |||
脱乙烷塔 | 3.07×10-9 | 0.99 | |
2.66×10-4 | |||
1.29×10-6 | |||
3.01×10-8 | |||
2.94×10-9 | |||
1.21×10-1 | |||
4.50×10-1 | |||
脱丁烷塔 | 4.27×10-8 | 0.99 | |
1.82×10-8 | |||
1.44×10-5 | |||
3.32×10-8 | |||
4.29×10-9 | |||
1.18×10-0 | |||
3.31×10-0 |
1 | 周逸江. 国际组织自主性与全球气候治理中的联合国: 聚焦2019年联合国气候行动峰会[J]. 国际论坛, 2020, 22(5): 76-96, 158. |
Zhou Y J. The autonomy of international organizations and the united nations in global climate governance: the case of the 2019 UN global climate action summit[J]. International Forum, 2020, 22(5): 76-96, 158. | |
2 | 陈卫东. 碳中和是一场没有硝烟的全球博弈[J]. 中国石油和化工产业观察, 2021(8): 60-61. |
Chen W D. Carbon neutrality is a global game without gunpowder smoke [J]. China Petrochemical Industry Observer, 2021(8): 60-61. | |
3 | 周利. 炼油企业资源网络的集成优化方法研究[D]. 杭州: 浙江大学, 2015. |
Zhou L. Integrated optimization of resource networks in refinery[D]. Hangzhou: Zhejiang University, 2015. | |
4 | 魏莉莉. 炼油厂氢气系统稳定性的研究[D]. 杭州: 浙江大学, 2018. |
Wei L L. Stability optimization of hydrogen networks in refinery[D]. Hangzhou: Zhejiang University, 2018. | |
5 | Zhou L, Liao Z W, Wang J D, et al. Optimal design of sustainable hydrogen networks[J]. International Journal of Hydrogen Energy, 2013, 38(7): 2937-2950. |
6 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
7 | Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17): 5986-5995. |
8 | Zhao Z H, Liu G L, Feng X. New graphical method for the integration of hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6512-6517. |
9 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
10 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
11 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
12 | 梁肖强, 刘永忠, 张亮. 集中式提纯器的设置与具有中间等级氢气网络的优化[J]. 化工进展, 2014, 33(3): 577-582. |
Liang X Q, Liu Y Z, Zhang L. Installation of a centralized purifier and optimization of hydrogen network with intermediate levels[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 577-582. | |
13 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
14 | Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477. |
15 | Jia X X, Liu G L. Optimization of hydrogen networks with multiple impurities and impurity removal[J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1236-1242. |
16 | 焦云强, 苏宏业, 侯卫锋. 炼油厂氢气网络柔性优化[J]. 化工学报, 2012, 63(9): 2739-2748. |
Jiao Y Q, Su H Y, Hou W F. Flexible optimization of refinery hydrogen network[J]. CIESC Journal, 2012, 63(9): 2739-2748. | |
17 | Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219. |
18 |
Deng C, Lu X T, Zhang Q X, et al. Fuzzy optimization design of multicomponent refinery hydrogen network[J]. Chinese Journal of Chemical Engineering, 2021,DOI:10.1016/j.cjche.2021.04.014 .
DOI |
19 | 蒋迎花, 韩儒松, 康丽霞, 等. 厂际氢气网络多周期集成的分步优化方法[J]. 化工学报, 2021, 72(9): 4816-4829. |
Jiang Y H, Han R S, Kang L X, et al. Step-wise approach to integrate inter-plant hydrogen networks under multi-period operations[J]. CIESC Journal, 2021, 72(9): 4816-4829. | |
20 | 朱美倩. 炼厂气组合分离工艺设计与氢气系统优化[D]. 北京: 中国石油大学(北京), 2019. |
Zhu M Q. Design of hybrid separation process for refinery-off gas and optimization of hydrogen system[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
21 | 李雪静, 乔明, 郑轶丹. 世界炼油工业二氧化碳减排进展[J]. 中外能源, 2010, 15(5): 64-70. |
Li X J, Qiao M, Zheng Y D. Advances in CO2 emission reduction in global refining industry[J]. Sino-Global Energy, 2010, 15(5): 64-70. | |
22 | Deng C, Zhu M Q, Liu J, et al. Systematic retrofit method for refinery hydrogen network with light hydrocarbons recovery[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19391-19404. |
23 | Yang M B, Feng X, Zhao L. Coupling pinch analysis and rigorous process simulation for hydrogen networks with light hydrocarbon recovery[J]. Chinese Journal of Chemical Engineering, 2021, 40: 141-148. |
24 | Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267. |
25 | Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. |
26 | Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720. |
27 | 王红光, 王立国. 炼厂干气回收轻烃技术评述[J]. 炼油技术与工程, 2009, 39(12): 8-11. |
Wang H G, Wang L G. Recovery of light olefins from refinery dry-gas[J]. Petroleum Refinery Engineering, 2009, 39(12): 8-11. | |
28 | Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
29 | Garud S S, Karimi I A, Kraft M. Design of computer experiments: a review[J]. Computers & Chemical Engineering, 2017, 106: 71-95. |
30 | Elkamel A, Alhajri I, Almansoori A, et al. Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications[J]. International Journal of Process Systems Engineering, 2011, 1(3/4): 302. |
31 | 牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3): 163-167. |
Niu Y Q, Dong K Y, Jiang H D, et al. Integrated carbon dioxide emissions evaluation method of Chinese petroleum refining enterprises[J]. Environmental Engineering, 2017, 35(3): 163-167. | |
32 | Geoffrion A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22(3): 618-630. |
33 | Davisson W I. Public investment criteria[J]. Land Economics, 1964, 40(2): 153. |
34 | Rosenberg R S. Simulation of genetic populations with biochemical properties(II):Selection of crossover probabilities[J]. Mathematical Biosciences, 1970, 8(1/2): 1-37. |
35 | Kim I Y, de Weck O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Structural and Multidisciplinary Optimization, 2005, 29(2): 149-158. |
36 | Brook A, Kendrick D, GAMS Meeraus A., user's guide a [J]. ACM SIGNUM Newsletter, 1988, 23(3/4): 10-11. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[9] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[10] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[11] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[12] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[15] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||