CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3518-3528.DOI: 10.11949/0438-1157.20220609
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2022-04-29
Revised:
2022-07-05
Online:
2022-09-06
Published:
2022-08-05
Contact:
Zhong XIN
通讯作者:
辛忠
作者简介:
姚翰林(1993—),男,博士研究生,18818205845@163.com
基金资助:
CLC Number:
Hanlin YAO, Zhong XIN. Research on flow behavior of liquid-phase precipitation reaction in the tubular microchannel reactor[J]. CIESC Journal, 2022, 73(8): 3518-3528.
姚翰林, 辛忠. 液相沉淀反应在管式微通道反应器中的流动行为研究[J]. 化工学报, 2022, 73(8): 3518-3528.
Add to citation manager EndNote|Ris|BibTeX
优/劣势 | 外环液层式微通道反应器 | 套管式微通道反应器 | |
---|---|---|---|
外环液层与反应溶剂不互溶 | 外环液层与反应溶剂相同 | ||
优势 | 1. 对反应沉淀和流动壁面的阻隔作用更加明显 2. 可保持反应物浓度和反应速率不被降低 | 1. 可保持反应器本身的传热性能 2. 不存在液液两相的分离问题 | 1. 射流速度高,可有效破坏沉积层和团聚体 2. 混合效果好 |
劣势 | 1. 增加了对反应物料的传热阻力 2. 增加了反应容积(管长) 3. 增加了分离难度和原料成本 | 1. 降低了反应物浓度和反应速率,增加了反应容积(管长) 2. 均匀混合后反应沉淀仍可能在壁面沉积 | 1. 内管压力大 2. 微孔加工精度要求高 3. 反应物的物质的量比可能失准,需要通过实验验证 |
Table 1 Analysis of potential superiorities and flaws of two novel static mixing microchannel reactor models
优/劣势 | 外环液层式微通道反应器 | 套管式微通道反应器 | |
---|---|---|---|
外环液层与反应溶剂不互溶 | 外环液层与反应溶剂相同 | ||
优势 | 1. 对反应沉淀和流动壁面的阻隔作用更加明显 2. 可保持反应物浓度和反应速率不被降低 | 1. 可保持反应器本身的传热性能 2. 不存在液液两相的分离问题 | 1. 射流速度高,可有效破坏沉积层和团聚体 2. 混合效果好 |
劣势 | 1. 增加了对反应物料的传热阻力 2. 增加了反应容积(管长) 3. 增加了分离难度和原料成本 | 1. 降低了反应物浓度和反应速率,增加了反应容积(管长) 2. 均匀混合后反应沉淀仍可能在壁面沉积 | 1. 内管压力大 2. 微孔加工精度要求高 3. 反应物的物质的量比可能失准,需要通过实验验证 |
4 | Coley C W, Thomas D A, Lummiss J A M, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning[J]. Science, 2019, 365(6453): eaax1566. |
5 | Lin H K, Dai C H, Jamison T F, et al. A rapid total synthesis of ciprofloxacin hydrochloride in continuous flow[J]. Angewandte Chemie International Edition, 2017, 56(30): 8870-8873. |
6 | Luo L M, Yang M, Chen G W. Continuous synthesis of reduced graphene oxide-supported bimetallic NPs in liquid-liquid segmented flow[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8456-8468. |
7 | Onisuru O R, Alimi O A, Potgieter K, et al. Continuous-flow catalytic degradation of hexacyanoferrate ion through electron transfer induction in a 3D-printed flow reactor[J]. Journal of Materials Engineering and Performance, 2021, 30(7): 4891-4901. |
8 | Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169(21): 18-33. |
9 | Yang L, Ładosz A, Jensen K F. Analysis and simulation of multiphase hydrodynamics in capillary microseparators[J]. Lab on a Chip, 2019, 19(4): 706-715. |
10 | Zhu K, Yao C Q, Liu Y Y, et al. Using expansion units to improve CO2 absorption for natural gas purification — a study on the hydrodynamics and mass transfer[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 35-46. |
11 | Zhang L, Bo X F, Yao H L, et al. Zinc-catalyzed alkylation of aromatic amines in continuous flow[J]. Organic Process Research & Development, 2020, 24(10): 2078-2084. |
12 | Zhao F, Cambié D, Janse J, et al. Scale-up of a luminescent solar concentrator-based photomicroreactor via numbering-up[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 422-429. |
13 | Dong Z Y, Delacour C, Mc Carogher K, et al. Continuous ultrasonic reactors: design, mechanism and application[J]. Materials (Basel, Switzerland), 2020, 13(2): 344-368. |
14 | Dong Z Y, Fernandez R D, Kuhn S. Acoustophoretic focusing effects on particle synthesis and clogging in microreactors[J]. Lab on a Chip, 2019, 19(2): 316-327. |
15 | Hartman R L. Managing solids in microreactors for the upstream continuous processing of fine chemicals[J]. Organic Process Research & Development, 2012, 16(5): 870-887. |
16 | Mao M M, Zhang L, Yao H L, et al. Development and scale-up of the rapid synthesis of triphenyl phosphites in continuous flow[J]. ACS Omega, 2020, 5(16): 9503-9509. |
17 | Yao H L, Wan L, Zhao X Y, et al. Effective phosphorylation of 2,2'-methylene-bis(4,6-di-tert-butyl) phenol in continuous flow reactors[J]. Organic Process Research & Development, 2021, 25(9): 2060-2070. |
18 | Tamaki T, Nagaki A. Flash production of organophosphorus compounds in flow[J]. Tetrahedron Letters, 2021, 81: 153364. |
19 | Dong X R, Wang K, Luo G S. Microreaction continuous synthesis of gold nanoparticles[J]. Chinese Journal of Chemical Engineering, 2021, 72(7): 3823-3831. |
20 | Nagasawa H, Mae K. Development of a new microreactor based on annular microsegments for fine particle production[J]. Industrial & Engineering Chemistry Research, 2006, 45(7): 2179-2186. |
21 | Nagasawa H, Tsujiuchi T, Maki T, et al. Controlling fine particle formation processes using a concentric microreactor[J]. AIChE Journal, 2007, 53(1): 196-206. |
22 | Cruz P C, Silva C R, Rocha F A, et al. Mixing performance of planar oscillatory flow reactors with liquid solutions and solid suspensions[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2663-2676. |
23 | Ley S V, Fitzpatrick D E, Myers R M, et al. Machine-assisted organic synthesis[J]. Angewandte Chemie International Edition, 2015, 54(35): 10122-10136. |
24 | Sleveland D, Bjørsvik H R. Synthesis of phenylboronic acids in continuous flow by means of a multijet oscillating disc reactor system operating at cryogenic temperatures[J]. Organic Process Research & Development, 2012, 16(5): 1121-1130. |
25 | Mo Y M, Lin H K, Jensen K F. High-performance miniature CSTR for biphasic C—C bond-forming reactions[J]. Chemical Engineering Journal, 2018, 335: 936-944. |
26 | Kern D Q, Seaton R A. A theoretical analysis of thermal surface fouling[J]. British Chemical Engineering, 1959, 4(5): 258-262. |
27 | Trofa M, D'Avino G, Sicignano L, et al. CFD-DEM simulations of particulate fouling in microchannels[J]. Chemical Engineering Journal, 2019, 358: 91-100. |
28 | Hartman R L, Naber J R, Zaborenko N, et al. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C—N bond formation in microreactors[J]. Organic Process Research & Development, 2010, 14(6): 1347-1357. |
29 | Sicignano L, Tomaiuolo G, Perazzo A, et al. The effect of shear flow on microreactor clogging[J]. Chemical Engineering Journal, 2018, 341: 639-647. |
30 | Hsu C P, Ramakrishna S N, Zanini M, et al. Roughness-dependent tribology effects on discontinuous shear thickening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20): 5117-5122. |
31 | 杨红娟, 韦方强, 胡凯衡, 等. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 2016, 47(7): 884-890. |
Yang H J, Wei F Q, Hu K H, et al. Rheological parameters of debris flow slurries with different maximum grain sizes[J]. Journal of Hydraulic Engineering, 2016, 47(7): 884-890. | |
1 | Adamo A, Beingessner R L, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
2 | Bogdan A, Poe S, Kubis D, et al. The continuous-flow synthesis of ibuprofen[J]. Angewandte Chemie International Edition, 2009, 48(45): 8547-8550. |
3 | Cambié D, Bottecchia C, Straathof N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17): 10276-10341. |
32 | 茅梦梅, 万力, 辛忠. 抗氧剂168的连续流高效制备[J]. 精细化工, 2019, 36(10): 2151-2154. |
Mao M M, Wan L, Xin Z. Highly efficient synthesis of antioxidant 168 in continuous flow[J]. Fine Chemicals, 2019, 36(10): 2151-2154. | |
33 | Boylu F, Dinçer H, Ateşok G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries[J]. Fuel Processing Technology, 2004, 85(4): 241-250. |
34 | Singh H, Kumar S, Mohapatra S K, et al. Slurryability and flowability of coal water slurry: effect of particle size distribution[J]. Journal of Cleaner Production, 2021, 323: 129183. |
35 | Guillot P, Colin A. Determination of the flow curve of complex fluids using the Rabinowitsch-Mooney equation in sensorless microrheometer[J]. Microfluidics and Nanofluidics, 2014, 17(3): 605-611. |
36 | Levenspiel O. Chemical Reaction Engineering[M]. New York: Wiley-VCH, 1999. |
37 | Foust A S. Principles of Unit Operations[M]. New York: John Willey and Sons Inc., 1980. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[7] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[11] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[12] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[15] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||