CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4518-4526.DOI: 10.11949/0438-1157.20220747
• Separation engineering • Previous Articles Next Articles
Xu LIU1(), Songlin XU1(), Yanfei WANG2
Received:
2022-05-26
Revised:
2022-07-26
Online:
2022-11-02
Published:
2022-10-05
Contact:
Songlin XU
通讯作者:
许松林
作者简介:
柳旭(1996—),女,硕士研究生,xuliu_hg@tju.edu.cn
基金资助:
CLC Number:
Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526.
柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526.
Add to citation manager EndNote|Ris|BibTeX
基团 | RK | QK |
---|---|---|
CH— | 0.4469 | 0.228 |
CH3O— | 1.1450 | 1.088 |
CH3— | 0.9011 | 0.848 |
COOH— | 1.3013 | 1.224 |
Table 1 UNIFAC group volume RK and group surface area QK
基团 | RK | QK |
---|---|---|
CH— | 0.4469 | 0.228 |
CH3O— | 1.1450 | 1.088 |
CH3— | 0.9011 | 0.848 |
COOH— | 1.3013 | 1.224 |
基团 | CH— | CH3O— | CH3— | COOH— |
---|---|---|---|---|
CH— | 0 | 251.5 | 0 | 663.5 |
CH3O— | 83.36 | 0 | 83.36 | 664.6 |
CH3— | 0 | 251.5 | 0 | 663.5 |
COOH— | 315.3 | -338.5 | 315.3 | 0 |
Table 2 Interaction parameters of UNIFAC groups
基团 | CH— | CH3O— | CH3— | COOH— |
---|---|---|---|---|
CH— | 0 | 251.5 | 0 | 663.5 |
CH3O— | 83.36 | 0 | 83.36 | 664.6 |
CH3— | 0 | 251.5 | 0 | 663.5 |
COOH— | 315.3 | -338.5 | 315.3 | 0 |
温度/K | x1 | x2 | y1 | y2 | γ1 | γ2 |
---|---|---|---|---|---|---|
391.581 | 0.98 | 0.02 | 0.99 | 0.01 | 0.9998 | 0.5819 |
391.985 | 0.96 | 0.04 | 0.97 | 0.03 | 0.9990 | 0.5972 |
392.366 | 0.94 | 0.06 | 0.96 | 0.04 | 0.9977 | 0.6128 |
392.721 | 0.92 | 0.08 | 0.94 | 0.06 | 0.9960 | 0.6285 |
393.046 | 0.90 | 0.10 | 0.93 | 0.07 | 0.9936 | 0.6444 |
393.336 | 0.88 | 0.12 | 0.91 | 0.09 | 0.9908 | 0.6605 |
393.589 | 0.86 | 0.14 | 0.89 | 0.11 | 0.9874 | 0.6766 |
393.833 | 0.70 | 0.30 | 0.66 | 0.34 | 0.9399 | 0.8057 |
393.605 | 0.68 | 0.32 | 0.63 | 0.37 | 0.9314 | 0.8215 |
392.557 | 0.62 | 0.38 | 0.52 | 0.48 | 0.9027 | 0.8673 |
389.704 | 0.52 | 0.48 | 0.35 | 0.65 | 0.8452 | 0.9376 |
386.690 | 0.44 | 0.56 | 0.23 | 0.77 | 0.7933 | 0.9856 |
385.882 | 0.42 | 0.58 | 0.21 | 0.79 | 0.7800 | 0.9961 |
374.159 | 0.06 | 0.94 | 0.01 | 0.99 | 0.9008 | 1.0118 |
373.763 | 0.04 | 0.96 | 0.01 | 0.99 | 1.0038 | 1.0060 |
Table 3 HAc-TMOF vapor-liqid equilibrium data of UNIFAC group contribution method
温度/K | x1 | x2 | y1 | y2 | γ1 | γ2 |
---|---|---|---|---|---|---|
391.581 | 0.98 | 0.02 | 0.99 | 0.01 | 0.9998 | 0.5819 |
391.985 | 0.96 | 0.04 | 0.97 | 0.03 | 0.9990 | 0.5972 |
392.366 | 0.94 | 0.06 | 0.96 | 0.04 | 0.9977 | 0.6128 |
392.721 | 0.92 | 0.08 | 0.94 | 0.06 | 0.9960 | 0.6285 |
393.046 | 0.90 | 0.10 | 0.93 | 0.07 | 0.9936 | 0.6444 |
393.336 | 0.88 | 0.12 | 0.91 | 0.09 | 0.9908 | 0.6605 |
393.589 | 0.86 | 0.14 | 0.89 | 0.11 | 0.9874 | 0.6766 |
393.833 | 0.70 | 0.30 | 0.66 | 0.34 | 0.9399 | 0.8057 |
393.605 | 0.68 | 0.32 | 0.63 | 0.37 | 0.9314 | 0.8215 |
392.557 | 0.62 | 0.38 | 0.52 | 0.48 | 0.9027 | 0.8673 |
389.704 | 0.52 | 0.48 | 0.35 | 0.65 | 0.8452 | 0.9376 |
386.690 | 0.44 | 0.56 | 0.23 | 0.77 | 0.7933 | 0.9856 |
385.882 | 0.42 | 0.58 | 0.21 | 0.79 | 0.7800 | 0.9961 |
374.159 | 0.06 | 0.94 | 0.01 | 0.99 | 0.9008 | 1.0118 |
373.763 | 0.04 | 0.96 | 0.01 | 0.99 | 1.0038 | 1.0060 |
NT | R | NF | S | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
25~35 | 0.4~1.0 | 9~13 | 0.8~1.6 | 4~8 | 20~30 | 6~12 | 2.5~3.5 |
Table 4 CED sensitivity analysis process parameters range and results
NT | R | NF | S | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
25~35 | 0.4~1.0 | 9~13 | 0.8~1.6 | 4~8 | 20~30 | 6~12 | 2.5~3.5 |
NT | S | R | NF | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
34 | 1.02 | 0.40 | 13 | 6 | 20 | 7 | 2.50 |
Table 5 CED process parameters optimization results
NT | S | R | NF | NS | NT′ | NF′ | R′ |
---|---|---|---|---|---|---|---|
34 | 1.02 | 0.40 | 13 | 6 | 20 | 7 | 2.50 |
N1 | R1 | NA | S1 | N | L/(kmol/h) | NL | N2 | NA′ | R2 |
---|---|---|---|---|---|---|---|---|---|
36~40 | 0.4~0.6 | 8~10 | 1.0~1.2 | 5~7 | 80~100 | 30~34 | 16~20 | 6~10 | 1.4~2.5 |
Table 6 Process parameters range and results of SED sensitivity analysis
N1 | R1 | NA | S1 | N | L/(kmol/h) | NL | N2 | NA′ | R2 |
---|---|---|---|---|---|---|---|---|---|
36~40 | 0.4~0.6 | 8~10 | 1.0~1.2 | 5~7 | 80~100 | 30~34 | 16~20 | 6~10 | 1.4~2.5 |
N1 | S1 | R1 | N | NA | L/(kmol/h) | NL | N2 | R2 | |
---|---|---|---|---|---|---|---|---|---|
37 | 1.01 | 0.42 | 7 | 8 | 83 | 31 | 17 | 6 | 1.47 |
Table 7 Optimization results of SED process parameters
N1 | S1 | R1 | N | NA | L/(kmol/h) | NL | N2 | R2 | |
---|---|---|---|---|---|---|---|---|---|
37 | 1.01 | 0.42 | 7 | 8 | 83 | 31 | 17 | 6 | 1.47 |
NM | RW | NW | SW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38~40 | 0.3~0.5 | 9~11 | 0.85~1.00 | 5~7 | 60~70 | 28~30 | 16~20 |
Table 8 Process parameters range and results of EDWC sensitivity analysis
NM | RW | NW | SW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38~40 | 0.3~0.5 | 9~11 | 0.85~1.00 | 5~7 | 60~70 | 28~30 | 16~20 |
NM | SW | RW | NW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38 | 0.88 | 0.38 | 11 | 6 | 65 | 29 | 18 |
Table 9 Optimization results of EDWC process parameters
NM | SW | RW | NW | V/(kmol/h) | NV | NR | |
---|---|---|---|---|---|---|---|
38 | 0.88 | 0.38 | 11 | 6 | 65 | 29 | 18 |
工艺 | 响应值 | 平方和 | 自由度 | 均方 | F值 | R2 |
---|---|---|---|---|---|---|
CED | TMOF 摩尔纯度 | 3.00×10-4 | 44 | 7.11×10-6 | 46.16 | 0.96 |
HAc 摩尔纯度 | 3.60×10-3 | 1.00×10-4 | 18.86 | 0.92 | ||
NMP 摩尔纯度 | 1.00×10-4 | 3.24×10-6 | 21.46 | 0.93 | ||
TAC | 5.90×1011 | 1.34×1010 | 9.84 | 0.85 | ||
Q | 8.24×106 | 1.03×106 | 74.75 | 0.85 | ||
SED | TMOF 摩尔纯度 | 8.00×10-4 | 65 | 0 | 13.32 | 0.89 |
HAc 摩尔纯度 | 7.00×10-3 | 1.00×10-4 | 6.91 | 0.81 | ||
NMP 摩尔纯度 | 7.00×10-4 | 0 | 7.92 | 0.83 | ||
TAC | 3.38×1011 | 5.20×109 | 337.24 | 0.99 | ||
Q | 4.65×106 | 7.15×104 | 344.64 | 0.99 | ||
EDWC | TMOF 摩尔纯度 | 2.00×10-4 | 44 | 4.19×10-6 | 21.84 | 0.97 |
HAc 摩尔纯度 | 1.00×10-3 | 0 | 20.45 | 0.97 | ||
NMP 摩尔纯度 | 0 | 5.49×10-7 | 78.61 | 0.99 | ||
TAC | 5.97×1010 | 1.36×109 | 10.80 | 0.94 | ||
Q | 7.08×105 | 1.61×104 | 11.28 | 0.94 |
Table 11 Optimization results of BBD response surface
工艺 | 响应值 | 平方和 | 自由度 | 均方 | F值 | R2 |
---|---|---|---|---|---|---|
CED | TMOF 摩尔纯度 | 3.00×10-4 | 44 | 7.11×10-6 | 46.16 | 0.96 |
HAc 摩尔纯度 | 3.60×10-3 | 1.00×10-4 | 18.86 | 0.92 | ||
NMP 摩尔纯度 | 1.00×10-4 | 3.24×10-6 | 21.46 | 0.93 | ||
TAC | 5.90×1011 | 1.34×1010 | 9.84 | 0.85 | ||
Q | 8.24×106 | 1.03×106 | 74.75 | 0.85 | ||
SED | TMOF 摩尔纯度 | 8.00×10-4 | 65 | 0 | 13.32 | 0.89 |
HAc 摩尔纯度 | 7.00×10-3 | 1.00×10-4 | 6.91 | 0.81 | ||
NMP 摩尔纯度 | 7.00×10-4 | 0 | 7.92 | 0.83 | ||
TAC | 3.38×1011 | 5.20×109 | 337.24 | 0.99 | ||
Q | 4.65×106 | 7.15×104 | 344.64 | 0.99 | ||
EDWC | TMOF 摩尔纯度 | 2.00×10-4 | 44 | 4.19×10-6 | 21.84 | 0.97 |
HAc 摩尔纯度 | 1.00×10-3 | 0 | 20.45 | 0.97 | ||
NMP 摩尔纯度 | 0 | 5.49×10-7 | 78.61 | 0.99 | ||
TAC | 5.97×1010 | 1.36×109 | 10.80 | 0.94 | ||
Q | 7.08×105 | 1.61×104 | 11.28 | 0.94 |
1 | Venkatesan V, Viswanathan K S. Conformations of trimethoxymethane: matrix isolation infrared and ab initio studies[J]. Journal of Molecular Structure, 2010, 973(1/2/3): 89-95. |
2 | Teloxa S F, Kennington S C D, Camats M, et al. Direct, enantioselective, and nickel(Ⅱ) catalyzed reactions of N-azidoacetyl thioimides with trimethyl orthoformate: a new combined methodology for the rapid synthesis of lacosamide and derivatives[J]. Chemistry - A European Journal, 2020, 26(50): 11540-11548. |
3 | Kariofillis S K, Shields B J, Tekle-Smith M A, et al. Nickel/photoredox-catalyzed methylation of (hetero)aryl chlorides using trimethyl orthoformate as a methyl radical source[J]. Journal of the American Chemical Society, 2020, 142(16): 7683-7689. |
4 | Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682): 605-608. |
5 | Balba H. Review of strobilurin fungicide chemicals[J]. Journal of Environmental Science and Health, Part B, 2007, 42(4): 441-451. |
6 | 许标. 3-(α-甲氧基)甲烯基苯并呋喃-2(3H)-酮的合成[J]. 山东化工, 2017, 46(17): 42-43. |
Xu B. Synthesis of 3-(α-methoxy) methylenebezofuran-2(3H)-ketone[J]. Shandong Chemical Industry, 2017, 46(17): 42-43. | |
7 | 杨朋. 杀菌剂嘧菌酯的合成和工艺优化[D]. 杭州: 浙江工业大学, 2013. |
Yang P. Process optimization on the synthesis of fungicide azoxystrobin[D]. Hangzhou: Zhejiang University of Technology, 2013. | |
8 | 刘长庆, 徐小兵, 黄显超, 等. 一种甲氧基苯并呋喃酮的分离提纯工艺: 109651316A[P]. 2019-04-19. |
Liu C Q, Xu X B, Huang X C, et al. Separation and purification process of methoxyl benzofuranone: 109651316A[P]. 2019-04-19. | |
9 | 黄显超, 徐小兵, 程伟家, 等. 一种甲氧基苯并呋喃酮的合成方法: 109678825A[P]. 2019-04-26. |
Huang X C, Xu X B, Cheng W J, et al. Synthesis method of methoxybenzofuranone: 109678825A[P]. 2019-04-26. | |
10 | Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE Journal, 1975, 21(6): 1086-1099. |
11 | Wittig R, Lohmann J, Gmehling J. Vapor-liquid equilibria by UNIFAC group contribution.6. Revision and extension[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 183-188. |
12 | Kamesh R, Kumari A, Rani K Y. Measurements, correlations, and modified UNIFAC predictions of isobaric vapor-liquid equilibrium data for the binary system of dimethyl carbonate + anisole at different pressures[J]. Journal of Chemical & Engineering Data, 2021, 66(10): 3788-3801. |
13 | 张莘, 高伟, 齐鸣, 等. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(S1): 1-9. |
Zhang S, Gao W, Qi M, et al. A review of optimization rectification systems based on multi-objective[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 1-9. | |
14 | Weerachaipichasgul W, Wanwongka A, Saengdaw S, et al. Response surface methodology to evaluate energy in extractive distillation process for the mixture of methylal and methanol with glycerol as entrainer[J]. Journal of Engineering Science and Technology, 2021, 16(5): 4235-4249. |
15 | 杨涛, 李肖, 宁阳坤, 等. 双塔精馏回收环己醇工艺模拟与优化[J]. 现代化工, 2017, 37(8): 195-199. |
Yang T, Li X, Ning Y K, et al. Simulation and optimization of cyclohexanol recovery by twin towers distillation[J]. Modern Chemical Industry, 2017, 37(8): 195-199. | |
16 | 肖武, 李明月, 阮雪华, 等. 响应面法优化一水硫酸氢钠流化催化精馏生产乙酸乙酯工艺条件[J]. 化工学报, 2014, 65(11): 4465-4471. |
Xiao W, Li M Y, Ruan X H, et al. Optimization of ethyl acetate process conditions for sodium bisulfate fluidized catalytic distillation using response surface methodology[J]. CIESC Journal, 2014, 65(11): 4465-4471. | |
17 | Liang J, Wang H H, Wang Z, et al. Optimal separation of acetonitrile and pyridine from industrial wastewater[J]. Chemical Engineering Research and Design, 2021, 169: 54-65. |
18 | 黄国强, 靳权. 隔壁精馏塔的设计、模拟与优化[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(12): 1057-1064. |
Huang G Q, Jin Q. Design, simulation and optimization of divided wall column[J]. Journal of Tianjin University(Science and Technology), 2014, 47(12): 1057-1064. | |
19 | Patrut C, Udrea E C, Bildea C S. Sepation of water-acetic acid mixtures by cyclic distillation[J]. Chemistry and Materials Science, 2018, 80(4): 49-66. |
20 | Bishop K, O'Connell J P. Aqueous cross second virial coefficients with the correlation[J]. Industrial & Engineering Chemistry Research, 2005, 44(3): 630-633. |
21 | 魏静, 解新安, 丁年平, 等. UNIFAC基团贡献法研究及应用进展[J]. 当代化工, 2008, 37(6): 659-665. |
Wei J, Xie X N, Ding N P, et al. The development of research and applications for UNIFAC group contribution method[J]. Contemporary Chemical Industry, 2008, 37(6): 659-665. | |
22 | 郭天民, 钟银珠, 李再琮. 四种活度系数模型在汽液平衡和精馏计算中的应用和比较[J]. 化工学报, 1980, 31(2): 173-190. |
Guo T M, Zhong Y Z, Li Z C. The application and comparison of four activity coefficient models in vapor-liquid equilibrium and distillation calculations[J]. Journal of Chemical Industry and Engineering (China), 1980, 31(2): 173-190. | |
23 | 商文砚. 以离子液体为萃取剂萃取精馏分离甲醇-乙酸甲酯共沸物[D]. 天津: 天津大学, 2019. |
Shang W Y. Extractive distillation for azeotropic mixture of methanol and methyl acetate with ionic liquids as solvent[D]. Tianjin: Tianjin University, 2019. | |
24 | Shan B M, Zheng Q, Chen Z R, et al. Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene/isopropanol/water separation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128: 73-86. |
25 | 张莉平. 醋酸废水萃取精馏研究[D]. 杭州: 浙江大学, 2020. |
Zhang L P. Study on the extractive distillation of acetic acid wastewater[D]. Hangzhou: Zhejiang University, 2020. | |
26 | 王萌萌, 吴莉莉, 陈学梅. N-甲基吡咯烷酮分离醋酸-水体系微观机理分析[J].化学工程与装备, 2016(7): 21-26. |
Wang M M, Wu L L, Chen X M. Microscopic mechanism analysis of N-methylpyrrolidone separation system of acetic acid-water[J]. Chemical Engineering & Equipment, 2016(7): 21-26. | |
27 | 平丽娟, 彭勇, 毛建卫. 26.67kPa下醋酸-水-N-甲基吡咯烷酮体系汽液相平衡的研究[J]. 高校化学工程学报, 2011, 25(4): 554-558. |
Ping L J, Peng Y, Mao J W. Vapor-liquid equilibria of acetic acid-water-N-methylpyrrolidone system at 26.67kPa[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(4): 554-558. | |
28 | You X Q, Gu J L, Peng C J, et al. Optimal design of extractive distillation for acetic acid dehydration with N-methyl acetamide[J]. Chemical Engineering and Processing-Process Intensification, 2017, 120: 301-316. |
29 | Cui F G, Cui C T, Sun J S. Simultaneous optimization of heat-integrated extractive distillation with a recycle feed using pseudo transient continuation models[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15423-15436. |
30 | Luyben W L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation[J]. Computer & Chemical Engineering, 2013, 50: 1-7. |
31 | Wang C, Guang C, Cui Y, et al. Compared novel thermally coupled extractive distillation sequences for separating multi-azotropic mixture of acetonitrile/benzene/methanol[J]. Chemical Engineering Research and Design, 2018, 136: 513-528. |
32 | 叶贞成, 倪泽雨, 程辉. 一种改进的分隔壁精馏塔简捷计算方法[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 26-34. |
Ye Z C, Ni Z Y, Cheng H. An improved shortcut design method for dividing wall column[J]. Journal of East China University of Science and Technology, 2021, 47(1): 26-34. | |
33 | Ling H, Qiu J, Hua T, et al. Remixing analysis of four-product dividing-wall columns[J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367. |
34 | Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[5] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[6] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[7] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[8] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[9] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[10] | Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis [J]. CIESC Journal, 2022, 73(5): 2060-2072. |
[11] | Qiwang HOU, Zhaolun WEN, Zhonglin ZHANG, Yegang LIU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO, Guoqing GUAN. Design and evaluation of a coal-based polygeneration system with carbon cycle [J]. CIESC Journal, 2022, 73(5): 2073-2082. |
[12] | Qucheng LIN, Zuwei LIAO. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm [J]. CIESC Journal, 2022, 73(11): 5047-5055. |
[13] | Kefan ZHAO, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimal design for dividing wall column using online Kriging surrogate model-based optimization method [J]. CIESC Journal, 2022, 73(1): 332-341. |
[14] | WANG Zhaoqi, LI Mengshan, HU Haitao, WEI Wenjian. Development of simulation model for double row folded microchannel heat exchanger [J]. CIESC Journal, 2021, 72(S1): 113-119. |
[15] | Yegang LIU, Zhonglin ZHANG, Qiwang HOU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO. Process design and simulation of synthesis gas to methanol in TBCFB system [J]. CIESC Journal, 2021, 72(9): 4838-4846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||