CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5230-5239.DOI: 10.11949/0438-1157.20220816
• Special column for Thermalchemical conversion of biomass and organic solid wastes • Previous Articles Next Articles
Li LIU1,2(), Peng JIANG1, Wei WANG2, Tonghuan ZHANG1, Liwen MU1, Xiaohua LU1, Jiahua ZHU1()
Received:
2022-06-11
Revised:
2022-07-24
Online:
2022-12-06
Published:
2022-11-05
Contact:
Jiahua ZHU
刘立1,2(), 蒋鹏1, 王伟2, 张同桓1, 穆立文1, 陆小华1, 朱家华1()
通讯作者:
朱家华
作者简介:
刘立(1991—),女,博士,助理研究员,Liuli1226137@163.com
基金资助:
CLC Number:
Li LIU, Peng JIANG, Wei WANG, Tonghuan ZHANG, Liwen MU, Xiaohua LU, Jiahua ZHU. Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion[J]. CIESC Journal, 2022, 73(11): 5230-5239.
刘立, 蒋鹏, 王伟, 张同桓, 穆立文, 陆小华, 朱家华. 基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测[J]. 化工学报, 2022, 73(11): 5230-5239.
Add to citation manager EndNote|Ris|BibTeX
工业分析/%(mass) | 元素分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Moi(水分) | Vol(挥发分) | FC(固定碳) | Ash(灰分) | C | H | O | N | ||
2.1~50.0 | 32.5~83.0 | 2.1~30.2 | 0.1~20.6 | 29.2~53.7 | 2.1~8.3 | 9.2~58.8 | 0~1.2 | ||
裂解温度/℃ | 裂解产物/%(mass) | ||||||||
Char | H2 | CH4 | CO | CO2 | |||||
400~800 | 14.1~49.2 | 0.1~16.9 | 0.1~13.3 | 11.0~52.3 | 17.7~62.0 |
Table 1 The range of input variables, pyrolysis products yield
工业分析/%(mass) | 元素分析/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Moi(水分) | Vol(挥发分) | FC(固定碳) | Ash(灰分) | C | H | O | N | ||
2.1~50.0 | 32.5~83.0 | 2.1~30.2 | 0.1~20.6 | 29.2~53.7 | 2.1~8.3 | 9.2~58.8 | 0~1.2 | ||
裂解温度/℃ | 裂解产物/%(mass) | ||||||||
Char | H2 | CH4 | CO | CO2 | |||||
400~800 | 14.1~49.2 | 0.1~16.9 | 0.1~13.3 | 11.0~52.3 | 17.7~62.0 |
工艺参数 | 产品 | ||||
---|---|---|---|---|---|
重整温度/℃ | 水蒸气量/(kg/h) | 活性炭产率/%(mass) | 氢气浓度/%(vol) | 氢气流量/(kmol/h) | |
630~790 | 100~11950 | 0~20 | 44.58~96.77 | 142.35~615.98 |
Table 2 The range of input variables, pyrolysis products yield, and process conditions in Aspen Plus
工艺参数 | 产品 | ||||
---|---|---|---|---|---|
重整温度/℃ | 水蒸气量/(kg/h) | 活性炭产率/%(mass) | 氢气浓度/%(vol) | 氢气流量/(kmol/h) | |
630~790 | 100~11950 | 0~20 | 44.58~96.77 | 142.35~615.98 |
Fig.5 Univariate PDP analysis of the correlation between hydrogen concentration and hydrogen yield (the ticks on the x-axis represent the quantiles of the target feature values, reflecting the data density)
1 | Sheldon R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chem., 2014, 16(3): 950-963. |
2 | Detchusananard T, Sharma S, Maréchal F, et al. Multi-objective optimization of sorption enhanced steam biomass gasification with solid oxide fuel cell[J]. Energy Conversion and Management, 2019, 182: 412-429. |
3 | Suopajärvi H, Umeki K, Mousa E, et al. Use of biomass in integrated steelmaking—status quo, future needs and comparison to other low-CO2 steel production technologies[J]. Applied Energy, 2018, 213: 384-407. |
4 | Nwachukwu C M, Wang C, Wetterlund E. Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry—the case of Sweden[J]. Applied Energy, 2021, 288: 116558. |
5 | 方向晨. 生物质在能源资源替代中的途径及前景展望[J]. 化工进展, 2011, 30(11): 2333-2339. |
Fang X C. Routes and prospects in the energy resources replacing by biomasses[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2333-2339. | |
6 | Liu L, Jiang P, Qian H L, et al. CO2-negative biomass conversion: an economic route with co-production of green hydrogen and highly porous carbon[J]. Applied Energy, 2022, 311: 118685. |
7 | Zhu X Z, Li Y N, Wang X N. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions[J]. Bioresource Technology, 2019, 288: 121527. |
8 | Jiang G C, Liu L, Xiong J J, et al. Advanced material-oriented biomass precise reconstruction: a review on porous carbon with inherited natural structure and created artificial structure by post-treatment[J]. Macromolecular Bioscience, 2022, 22(6): 2100479. |
9 | Wang Z T, Gong Z Q, Yusan T, et al. Renewable hydrogen production from biogas using iron-based chemical looping technology[J]. Chemical Engineering Journal, 2022, 429: 132192. |
10 | Zhuang R, Wang X, Guo M, et al. Waste-to-hydrogen: recycling HCl to produce H2 and Cl2 [J]. Applied Energy, 2020, 259: 114184. |
11 | Xu D K, Zhang Y T, Hsieh T L, et al. A novel chemical looping partial oxidation process for thermochemical conversion of biomass to syngas[J]. Applied Energy, 2018, 222: 119-131. |
12 | Chuayboon S, Abanades S. An overview of solar decarbonization processes, reacting oxide materials, and thermochemical reactors for hydrogen and syngas production[J]. International Journal of Hydrogen Energy, 2020, 45(48): 25783-25810. |
13 | Peters J F, Banks S W, Bridgwater A V, et al. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus[J]. Applied Energy, 2017, 188: 595-603. |
14 | Tang Q H, Chen Y Q, Yang H P, et al. Prediction of bio-oil yield and hydrogen contents based on machine learning method: effect of biomass compositions and pyrolysis conditions[J]. Energy & Fuels, 2020, 34(9): 11050-11060. |
15 | Li J, Zhu X Z, Li Y N, et al. Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource[J]. Journal of Cleaner Production, 2021, 278: 123928. |
16 | Chee E W, Wong W C, Wang X N. An integrated approach for machine-learning-based system identification of dynamical systems under control: application towards the model predictive control of a highly nonlinear reactor system[J]. Frontiers of Chemical Science and Engineering, 2022, 16(2): 237-250. |
17 | Han X, Wang X N, Zhou K. Develop machine learning-based regression predictive models for engineering protein solubility[J]. Bioinformatics, 2019, 35(22): 4640-4646. |
18 | Wang H H, Wang X, Cui Y S, et al. Slow pyrolysis polygeneration of bamboo (phyllostachys pubescens): product yield prediction and biochar formation mechanism[J]. Bioresource Technology, 2018, 263: 444-449. |
19 | Lee X J, Lee L Y, Gan S Y, et al. Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies[J]. Bioresource Technology, 2017, 236: 155-163. |
20 | Moralı U, Şensöz S. Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char[J]. Fuel, 2015, 150: 672-678. |
21 | Luo L, Xu C, Chen Z E, et al. Properties of biomass-derived biochars: combined effects of operating conditions and biomass types[J]. Bioresource Technology, 2015, 192: 83-89. |
22 | Chen D Y, Liu D, Zhang H R, et al. Bamboo pyrolysis using TG-FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields[J]. Fuel, 2015, 148: 79-86. |
23 | Chen D Y, Zhou J B, Zhang Q S. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo[J]. Bioresource Technology, 2014, 169: 313-319. |
24 | Lee Y, Eum P R B, Ryu C, et al. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1[J]. Bioresource Technology, 2013, 130: 345-350. |
25 | Angın D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2013, 128: 593-597. |
26 | Abnisa F, Arami-Niya A, Wan Daud W M A, et al. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis[J]. Energy Conversion and Management, 2013, 76: 1073-1082. |
27 | Abnisa F, Arami-Niya A, Daud W M A W, et al. Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes[J]. BioEnergy Research, 2013, 6(2): 830-840. |
28 | Mani T, Murugan P, Mahinpey N. Pyrolysis of oat straw and the comparison of the product yield to wheat and flax straw pyrolysis[J]. Energy & Fuels, 2011, 25(7): 2803-2807. |
29 | Cagnon B, Py X, Guillot A, et al. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors[J]. Bioresource Technology, 2009, 100(1): 292-298. |
30 | Şensöz S, Angın D. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake (part 1): The effects of pyrolysis parameters on the product yields[J]. Bioresource Technology, 2008, 99(13): 5492-5497. |
31 | Demirbas A. Production and characterization of bio-chars from biomass via pyrolysis[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2006, 28(5): 413-422. |
32 | Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. |
33 | Windeatt J H, Ross A B, Williams P T, et al. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment[J]. Journal of Environmental Management, 2014, 146: 189-197. |
34 | Oginni O, Singh K, Zondlo J W. Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West Virginia[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 319-329. |
35 | Cao D Y, Ji Y X, Liu L, et al. A facile and green strategy to synthesize N/P co-doped bio-char as VOCs adsorbent: through efficient biogas slurry treatment and struvite transform[J]. Fuel, 2022, 322: 124156. |
36 | Tan D, Suvarna M, Shee Tan Y, et al. A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing[J]. Applied Energy, 2021, 291: 116808. |
37 | Li J, Suvarna M, Pan L J, et al. A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification[J]. Applied Energy, 2021, 304: 117674. |
38 | Xiong J J, Jiang G C, Qian Y, et al. Cycling pressure-switching process enriches micropores in activated carbon by accelerating reactive gas internal diffusion in porous channels[J]. Sustainable Materials and Technologies, 2021, 28: e00248. |
39 | Li L Y, Yao Z Y, You S M, et al. Optimal design of negative emission hybrid renewable energy systems with biochar production[J]. Applied Energy, 2019, 243: 233-249. |
40 | Ascher S, Watson I, Wang X N, et al. Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: techno-economic and environmental feasibility[J]. Energy, 2019, 181: 455-467. |
41 | Kathe M V, Empfield A, Na J, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[5] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[6] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[7] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[8] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[9] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[10] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[13] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[14] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[15] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||