CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5230-5239.DOI: 10.11949/0438-1157.20220816

• Special column for Thermalchemical conversion of biomass and organic solid wastes • Previous Articles     Next Articles

Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion

Li LIU1,2(), Peng JIANG1, Wei WANG2, Tonghuan ZHANG1, Liwen MU1, Xiaohua LU1, Jiahua ZHU1()   

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
    2.School of Environment, Tsinghua University, Beijing 100084, China
  • Received:2022-06-11 Revised:2022-07-24 Online:2022-12-06 Published:2022-11-05
  • Contact: Jiahua ZHU

基于过程模拟和随机森林模型的生物质制氢过程因素分析与预测

刘立1,2(), 蒋鹏1, 王伟2, 张同桓1, 穆立文1, 陆小华1, 朱家华1()   

  1. 1.南京工业大学材料化学工程国家重点实验室,江苏 南京 211816
    2.清华大学环境学院,北京 100084
  • 通讯作者: 朱家华
  • 作者简介:刘立(1991—),女,博士,助理研究员,Liuli1226137@163.com
  • 基金资助:
    国家自然科学基金项目(91934302);材料化学工程国家重点实验室基金项目(ZK202006)

Abstract:

Biomass can replace fossil fuels, reduce greenhouse gas emissions, and is a promising renewable energy source. Co-production of multiple-products has been demonstrated efficient and economically viable process. The techno-economic feasibility of biomass conversion into hydrogen (H2) and activated carbon (AC) route has also been analyzed. However, the selection of raw materials and process parameters become the main barrier for scale-up production. The different types of biomass species and the process conditions affect the yield and quality of the products. In this paper, a process model was developed to simulate the biomass conversion process. H2 was produced from biomass through pyrolysis and chemical looping gasification processes. AC was fabricated from biomass through carbonization and activation processes. Then, machine learning was used to build a high-quality prediction model and accordingly explore the importance factors in producing demanded products. The results indicated that process parameters had greater influence than the raw materials on H2 concentration and yield. For example, hydrogen concentration was more relevant (61%) to the reforming temperature, hydrogen concentration in syngas and steam usage, hydrogen yield was more relevant (63%) to the dosage of activation agent and steam usage. Partial dependence plot (PDP) analysis provided the optimal range of processing parameters for maximized production of target products.

Key words: random forest, biomass, process simulation, prediction, hydrogen, activated carbon

摘要:

生物质可以替代化石燃料,减少温室气体排放,是一种有前途的可再生能源。生物质通过化学链气化制备氢气,碳化活化制备活性炭,两条工艺路线耦合可以联产绿色能源氢气和具有高附加值的活性炭,但是原材料选择和工艺参数优化成为规模化生产的主要障碍。在生物质联产氢气和活性炭工艺模型的基础上,建立高性能的随机森林预测模型,并探究生物质组分、工艺参数和过程产物对联产工艺的相对重要性。结果表明:生物质组分中的灰分、碳元素、氢元素的含量以及气体重整温度和水蒸气用量是准确预测氢气浓度和产量的重要影响因素。其中,重整温度、合成气中氢气浓度、水蒸气用量三个影响因素对氢气浓度的影响高达61%,活化剂用量、水蒸气用量两个因素对氢气产量的影响高达63%。此外,基于随机森林模型对生物质制氢过程中的因素进行分析和优化,可以实现氢气浓度达到96.8%(体积)。

关键词: 随机森林, 生物质, 过程模拟, 预测, 氢气, 活性炭

CLC Number: