CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5263-5274.DOI: 10.11949/0438-1157.20220916
• Special column for Thermalchemical conversion of biomass and organic solid wastes • Previous Articles
Kun QIN1(), Jiale LI1, Zhanghong WANG1,2(), Huiyan ZHANG2
Received:
2022-06-29
Revised:
2022-08-21
Online:
2022-12-06
Published:
2022-11-05
Contact:
Zhanghong WANG
通讯作者:
王章鸿
作者简介:
秦坤(1996-),男,硕士研究生,2435004756@qq.com
基金资助:
CLC Number:
Kun QIN, Jiale LI, Zhanghong WANG, Huiyan ZHANG. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment[J]. CIESC Journal, 2022, 73(11): 5263-5274.
秦坤, 李佳乐, 王章鸿, 张会岩. 富Ca香菇菌渣基生物炭对含磷废水处理性能的研究[J]. 化工学报, 2022, 73(11): 5263-5274.
Add to citation manager EndNote|Ris|BibTeX
项目 | MR-800C | MR-900C | MR-1000C |
---|---|---|---|
pH | 11.98 | 11.95 | 11.83 |
pHpzc | 11.86 | 12.04 | 11.88 |
水分/% | 1.17 | 1.07 | 1.04 |
灰分/% | 55.03 | 54.82 | 60.34 |
可燃分/% | 43.80 | 44.11 | 38.62 |
K/(mmol/kg) | 762.34 | 650.87 | 738.43 |
Na/(mmol/kg) | 136.44 | 145.56 | 167.98 |
Ca/(mmol/kg) | 4328.43 | 4576.84 | 4919.38 |
Mg/(mmol/kg) | 488.46 | 495.87 | 496.76 |
Fe/(mmol/kg) | 123.24 | 138.43 | 164.87 |
Ni/(mmol/kg) | 11.45 | 10.76 | 12.65 |
Pb/(mmol/kg) | 0.65 | 0.95 | 0.84 |
Cd/(mmol/kg) | 0.12 | 0.42 | 0.46 |
Table 1 Proximate analysis and minerals of biochars
项目 | MR-800C | MR-900C | MR-1000C |
---|---|---|---|
pH | 11.98 | 11.95 | 11.83 |
pHpzc | 11.86 | 12.04 | 11.88 |
水分/% | 1.17 | 1.07 | 1.04 |
灰分/% | 55.03 | 54.82 | 60.34 |
可燃分/% | 43.80 | 44.11 | 38.62 |
K/(mmol/kg) | 762.34 | 650.87 | 738.43 |
Na/(mmol/kg) | 136.44 | 145.56 | 167.98 |
Ca/(mmol/kg) | 4328.43 | 4576.84 | 4919.38 |
Mg/(mmol/kg) | 488.46 | 495.87 | 496.76 |
Fe/(mmol/kg) | 123.24 | 138.43 | 164.87 |
Ni/(mmol/kg) | 11.45 | 10.76 | 12.65 |
Pb/(mmol/kg) | 0.65 | 0.95 | 0.84 |
Cd/(mmol/kg) | 0.12 | 0.42 | 0.46 |
样品 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(L/mg) | R2 | Kf/(mg(1-n)·L n /g) | n | R2 | |
MR-800C | 104.17 | 0.01 | 0.926 | 25.73 | 5.55 | 0.840 |
MR-900C | 121.95 | 0.01 | 0.903 | 34.42 | 6.74 | 0.792 |
MR-1000C | 128.21 | 0.01 | 0.891 | 37.39 | 6.98 | 0.803 |
Table 2 Isotherm parameters of phosphate adsorption by biochars derived from adsorption isotherm models
样品 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(L/mg) | R2 | Kf/(mg(1-n)·L n /g) | n | R2 | |
MR-800C | 104.17 | 0.01 | 0.926 | 25.73 | 5.55 | 0.840 |
MR-900C | 121.95 | 0.01 | 0.903 | 34.42 | 6.74 | 0.792 |
MR-1000C | 128.21 | 0.01 | 0.891 | 37.39 | 6.98 | 0.803 |
样品 | qe,exp/(mg/g) | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
k1/(1/h) | qe/(mg/g) | R2 | k2/(g/(mg·h)) | qe/(mg/g) | R2 | ||
MR-800C | 40.58 | 8.31 | 2.04 | 0.237 | 145.08 | 39.81 | 0.998 |
MR-900C | 48.90 | 9.90 | 2.01 | 0.524 | 5.70 | 49.16 | 0.996 |
MR-1000C | 48.69 | 9.06 | 1.99 | 0.509 | 64.80 | 49.38 | 0.997 |
Table 3 Kinetic parameters of phosphate adsorption by biochars fitting with adsorption kinetic models
样品 | qe,exp/(mg/g) | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
k1/(1/h) | qe/(mg/g) | R2 | k2/(g/(mg·h)) | qe/(mg/g) | R2 | ||
MR-800C | 40.58 | 8.31 | 2.04 | 0.237 | 145.08 | 39.81 | 0.998 |
MR-900C | 48.90 | 9.90 | 2.01 | 0.524 | 5.70 | 49.16 | 0.996 |
MR-1000C | 48.69 | 9.06 | 1.99 | 0.509 | 64.80 | 49.38 | 0.997 |
样品 | ΔG0/(kJ/mol) | ΔH0/(kJ/mol) | ΔS0/(J/(mol·K)) | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
MR-800C | -5.1 | -5.54 | -6.34 | -6.65 | 10.58 | 54.42 |
MR-900C | -5.77 | -6.47 | -7.16 | -7.61 | 12.16 | 62.42 |
MR-1000C | -5.9 | -6.46 | -7.09 | -7.67 | 11.18 | 59.27 |
Table 4 Thermodynamic parameters of phosphate adsorption by biochars
样品 | ΔG0/(kJ/mol) | ΔH0/(kJ/mol) | ΔS0/(J/(mol·K)) | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
MR-800C | -5.1 | -5.54 | -6.34 | -6.65 | 10.58 | 54.42 |
MR-900C | -5.77 | -6.47 | -7.16 | -7.61 | 12.16 | 62.42 |
MR-1000C | -5.9 | -6.46 | -7.09 | -7.67 | 11.18 | 59.27 |
1 | Sewu D D, Boakye P, Jung H, et al. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica [J]. Bioresource Technology, 2017, 244: 1142-1149. |
2 | 中商产业研究院. 2021年食用菌行业市场现状大数据分析[EB/OL].[2021-09-17]. . |
China Business Industry Research Institute. Big data analysis on the current market situation of edible fungi industry in 2021[EB/OL]. [2021-09-17]. . | |
3 | Zhang G, Liu N, Luo Y, et al. Efficient removal of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from aqueous solutions by a mineral-rich biochar derived from a spent mushroom (Agaricus bisporus) substrate[J]. Materials (Basel, Switzerland), 2020, 14(1): E35. |
4 | Kulshreshtha S. Removal of pollutants using spent mushrooms substrates[J]. Environmental Chemistry Letters, 2019, 17(2): 833-847. |
5 | Leong Y K, Ma T W, Chang J S, et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource Technology, 2022, 344: 126157. |
6 | Mohd Hanafi F H, Rezania S, Mat Taib S, et al. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1383-1396. |
7 | Perera M K, Englehardt J D, Dvorak A C. Technologies for recovering nutrients from wastewater: a critical review[J]. Environmental Engineering Science, 2019, 36(5): 511-529. |
8 | Wang Z H, Shen D K, Shen F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 2016, 150: 1-7. |
9 | Kumar P S, Korving L, van Loosdrecht M C M, et al. Adsorption as a technology to achieve ultra-low concentrations of phosphate: research gaps and economic analysis[J]. Water Research X, 2019, 4: 100029. |
10 | Dai H L, Sun Y, Wan D, et al. Simultaneous denitrification and phosphorus removal: a review on the functional strains and activated sludge processes[J]. Science of the Total Environment, 2022, 835: 155409. |
11 | Yue X J, Zhang T, Yang D Y, et al. Direct separation of phosphate under highly acidic conditions using MnO2@CeO2 nanowires membrane[J]. Chemical Engineering and Processing - Process Intensification, 2022, 177: 108986. |
12 | Wang J L, Wang S Z. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
13 | Fahmy T Y A, Fahmy Y, Mobarak F, et al. Biomass pyrolysis: past, present, and future[J]. Environment, Development and Sustainability, 2020, 22(1): 17-32. |
14 | Kwon G, Bhatnagar A, Wang H L, et al. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar[J]. Journal of Hazardous Materials, 2020, 400: 123242. |
15 | 赵希强, 张健, 孙爽, 等. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
Zhao X Q, Zhang J, Sun S, et al. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater[J]. CIESC Journal, 2022, 73(5): 2158-2173. | |
16 | 李安玉, 李双莉, 余碧戈, 等. 镁浸渍生物炭吸附氨氮和磷: 制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695. |
Li A Y, Li S L, Yu B G, et al. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: preparation optimization and adsorption mechanism[J]. CIESC Journal, 2020, 71(4): 1683-1695. | |
17 | Zhao Y Q, Yang H, Xia S B, et al. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature[J]. Environmental Science and Pollution Research, 2022, 29: 57773-57789. |
18 | Jung K W, Kim K, Jeong T U, et al. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots)[J]. Bioresource Technology, 2016, 200: 1024-1028. |
19 | Hale S E, Alling V, Martinsen V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619. |
20 | Liang J S, Ye J P, Shi C, et al. Pyrolysis temperature regulates sludge-derived biochar production, phosphate adsorption and phosphate retention in soil[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107744. |
21 | Wang Z H, Guo H Y, Shen F, et al. Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH 4 + ), nitrate (NO 3 - ), and phosphate (PO 4 3 - )[J]. Chemosphere, 2015, 119: 646-653. |
22 | He Q S, Li X F, Ren Y P. Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on magnesium-modified biochar and the slow release effect of fertiliser[J]. Biochar, 2022, 4(1): 1-16. |
23 | Yin Q Q, Liu M T, Ren H P. Removal of ammonium and phosphate from water by Mg-modified biochar: influence of Mg pretreatment and pyrolysis temperature[J]. Bioresources, 2019, 14: 6203-6218. |
24 | Lou K Y, Rajapaksha A U, Ok Y S, et al. Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions[J]. Chemical Speciation & Bioavailability, 2016, 28(1/2/3/4): 42-50. |
25 | Yao Y, Gao B, Inyang M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 501-507. |
26 | Yang G, Wang Z H, Xian Q M, et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment[J]. RSC Advances, 2015, 5(50): 40117-40125. |
27 | Alhujaily A, Mao Y Z, Zhang J L, et al. Facile fabrication of Mg-Fe-biochar adsorbent derived from spent mushroom waste for phosphate removal[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117: 75-85. |
28 | Dong K Y, Xiang X M, Zhou J J, et al. Efficient fertilizer production from low phosphate water using in situ-formed vaterite/calcite calcium carbonate composite microspheres[J]. Science of The Total Environment, 2022, 822: 153620. |
29 | Cao H L, Wu X S, Syed-Hassan S S A, et al. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell[J]. Bioresource Technology, 2020, 318: 124063. |
30 | Wang Z J, Miao R R, Ning P, et al. From wastes to functions: a paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal[J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. |
31 | Wang Z H, Shen D K, Shen F, et al. Equilibrium, kinetics and thermodynamics of cadmium ions (Cd2+) removal from aqueous solution using earthworm manure-derived carbon materials[J]. Journal of Molecular Liquids, 2017, 241: 612-621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||