CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4998-5010.DOI: 10.11949/0438-1157.20220912
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Zhihua DU1(), Juan YANG1,2(
), Jun DAI1,2, Chongchong LENG1, Ge ZHANG1
Received:
2022-06-29
Revised:
2022-10-07
Online:
2022-12-06
Published:
2022-11-05
Contact:
Juan YANG
杜智华1(), 杨娟1,2(
), 戴俊1,2, 冷冲冲1, 张鸽1
通讯作者:
杨娟
作者简介:
杜智华(1998―),女,硕士研究生,zhihuadu@home.hpu.edu.cn
基金资助:
CLC Number:
Zhihua DU, Juan YANG, Jun DAI, Chongchong LENG, Ge ZHANG. Performance enhancement of selective photo-oxidation for NO removal on ZnTi-LDH by Ni2+ substitution[J]. CIESC Journal, 2022, 73(11): 4998-5010.
杜智华, 杨娟, 戴俊, 冷冲冲, 张鸽. Ni2+取代对ZnTi-LDH选择性光氧化去除NO的性能增强[J]. 化工学报, 2022, 73(11): 4998-5010.
Sample | Ni/(Ni + Zn)① | 比表面积/(m2/g) | 孔体积/(cm3/g) | NOrem/SBET② |
---|---|---|---|---|
ZnTi-LDH | 0 | 103 | 0.311 | 0.228 |
9% NiZnTi-LDH | 8.90% | 116 | 0.283 | 0.338 |
18% NiZnTi -LDH | 17.86% | 131 | 0.302 | 0.404 |
27% NiZnTi -LDH | 26.81% | 146 | 0.330 | 0.445 |
40% NiZnTi -LDH | 39.73% | 156 | 0.368 | 0.371 |
Table 1 Actual molar ratios of Ni2+ to divalent metal (Ni2++Zn2+), BET surface area, pore volume of NiZnTi-LDH samples and NO removal normalized by specific surface area (NOrem/SBET)
Sample | Ni/(Ni + Zn)① | 比表面积/(m2/g) | 孔体积/(cm3/g) | NOrem/SBET② |
---|---|---|---|---|
ZnTi-LDH | 0 | 103 | 0.311 | 0.228 |
9% NiZnTi-LDH | 8.90% | 116 | 0.283 | 0.338 |
18% NiZnTi -LDH | 17.86% | 131 | 0.302 | 0.404 |
27% NiZnTi -LDH | 26.81% | 146 | 0.330 | 0.445 |
40% NiZnTi -LDH | 39.73% | 156 | 0.368 | 0.371 |
Fig.8 NO removal percentage and toxic NO2 generation on different photocatalysts under simulated solar light and visible light irradiation respectively
Fig. 9 Production amount of NO2- and NO3- during photo-oxidation NO removal over 27% NiZnTi-LDH and ZnTi-LDH respectively (inset is ion chromatography spectra of catalyst eluent)
Fig.11 Radical trapping experiments of photocatalytic removal of NO; EPR spectra of DMPO/∙O2-, transient photocurrent response and EPR spectra of DMPO/∙OH of ZnTi-LDH, 27% NiZnTi-LDH and 40% NiZnTi-LDH
Sample | Catalyst amount/g | Light source | NO removal rate/% | NO x removal selectivity/% | Ref. |
---|---|---|---|---|---|
SrTiO3/SrCO3 | 0.05 | 300W Xe lamp (290—780 nm) | 47 | 86.17 | [ |
TiO2/HAp | 0.1 | 300W Xe lamp (290—780 nm) | 44.6 | 92.0 | [ |
ZnAlFe-LDHs | 0.05 | Xe lamp (≥510 nm) | 13 | 92 | [ |
Bi2O3/CuBi2O4 | 0.1 | 300W Xe lamp (≥420 nm) | 30 | 93.3 | [ |
Ni/Mg2Al-LDH | 0.4 | 8W UV lamp | 42 | 87 | [ |
Ag/ZnTi-LDH | 0.1 | Xe lamp (290—780 nm) | 43 | 92 | [ |
Pt-TiO2 | 0.05 | 500W tungsten lamp (≥420 nm) | 25.9 | 66 | [ |
amorphous carbon nitride | 0.1 | 150W tungsten lamp (≥420 nm) | 57.1 | 86.3 | [ |
Bi2O2CO3/Bi4O5Br2 | 0.1 | 300W Xe lamp (290—780 nm) | 53.2 | 89.3 | [ |
27% NiZnTi-LDH | 0.1 | Xe lamp (420—780 nm) | 52.1 | 97.4 | this work |
Xe lamp (290—780 nm) | 64.8 | 96.9 |
Table 2 Comparison of photocatalytic NO removal performance over various catalysts
Sample | Catalyst amount/g | Light source | NO removal rate/% | NO x removal selectivity/% | Ref. |
---|---|---|---|---|---|
SrTiO3/SrCO3 | 0.05 | 300W Xe lamp (290—780 nm) | 47 | 86.17 | [ |
TiO2/HAp | 0.1 | 300W Xe lamp (290—780 nm) | 44.6 | 92.0 | [ |
ZnAlFe-LDHs | 0.05 | Xe lamp (≥510 nm) | 13 | 92 | [ |
Bi2O3/CuBi2O4 | 0.1 | 300W Xe lamp (≥420 nm) | 30 | 93.3 | [ |
Ni/Mg2Al-LDH | 0.4 | 8W UV lamp | 42 | 87 | [ |
Ag/ZnTi-LDH | 0.1 | Xe lamp (290—780 nm) | 43 | 92 | [ |
Pt-TiO2 | 0.05 | 500W tungsten lamp (≥420 nm) | 25.9 | 66 | [ |
amorphous carbon nitride | 0.1 | 150W tungsten lamp (≥420 nm) | 57.1 | 86.3 | [ |
Bi2O2CO3/Bi4O5Br2 | 0.1 | 300W Xe lamp (290—780 nm) | 53.2 | 89.3 | [ |
27% NiZnTi-LDH | 0.1 | Xe lamp (420—780 nm) | 52.1 | 97.4 | this work |
Xe lamp (290—780 nm) | 64.8 | 96.9 |
1 | Kreuzer L B, Patel C K. Nitric oxide air pollution: detection by optoacoustic spectroscopy[J]. Science, 1971, 173(3991): 45-47. |
2 | Tian H Z, Liu K Y, Hao J M, et al. Nitrogen oxides emissions from thermal power plants in China: current status and future predictions[J]. Environmental Science & Technology, 2013, 47(19): 11350-11357. |
3 | Yu H S, Zhu Q Y, Tan Z C. Absorption of nitric oxide from simulated flue gas using different absorbents at room temperature and atmospheric pressure[J]. Applied Energy, 2012, 93: 53-58. |
4 | Casapu M, Kröcher O, Elsener M. Screening of doped MnO x -CeO2 catalysts for low-temperature NO-SCR[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 413-419. |
5 | Symalla M O, Drochner A, Vogel H, et al. IR-study of formation of nitrite and nitrate during NO x -adsorption on NSR-catalysts-compounds CeO2 and BaO/CeO2 [J]. Topics in Catalysis, 2007, 42/43(1/2/3/4): 199-202. |
6 | 张顾平, 王贝贝, 周舟, 等. 半导体材料在光催化低浓度氮氧化物的研究进展[J]. 化工学报, 2021, 72(1): 259-275. |
Zhang G P, Wang B B, Zhou Z, et al. Research progress of semiconductor materials for photocatalytic low concentration nitrogen oxides[J]. CIESC Journal, 2021, 72(1): 259-275. | |
7 | Pastor A, Rodriguez-Rivas F, de Miguel G, et al. Effects of Fe3+ substitution on Zn-Al layered double hydroxides for enhanced NO photochemical abatement[J]. Chemical Engineering Journal, 2020, 387: 124110. |
8 | Chen Q, Long H M, Chen M J, et al. In situ construction of biocompatible Z-scheme α-Bi2O3/CuBi2O4 heterojunction for NO removal under visible light[J]. Applied Catalysis B: Environmental, 2020, 272: 119008. |
9 | Hu Y, Song X, Jiang S M, et al. Enhanced photocatalytic activity of Pt-doped TiO2 for NO x oxidation both under UV and visible light irradiation: a synergistic effect of lattice Pt4+ and surface PtO[J]. Chemical Engineering Journal, 2015, 274: 102-112. |
10 | Zhu Y P, Zhu R L, Zhu G Q, et al. Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity[J]. Applied Surface Science, 2018, 433: 458-467. |
11 | Lv X S, Zhang J Y, Dong X G, et al. Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: band structure engineering and surface hydroxyl ions activation[J]. Applied Catalysis B: Environmental, 2020, 277: 119200. |
12 | Xu M X, Wang Y H, Geng J F, et al. Photodecomposition of NO x on Ag/TiO2 composite catalysts in a gas phase reactor[J]. Chemical Engineering Journal, 2017, 307: 181-188. |
13 | Shang H, Huang S, Li H, et al. Dual-site activation enhanced photocatalytic removal of NO with Au/CeO2 [J]. Chemical Engineering Journal, 2020, 386: 124047. |
14 | Ma J Z, Wang C X, He H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light[J]. Applied Catalysis B: Environmental, 2016, 184: 28-34. |
15 | Li Y H, Ho W, Lv K L, et al. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Applied Surface Science, 2018, 430: 380-389. |
16 | Fauzi A A, Jalil A A, Hassan N S, et al. A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant[J]. Chemosphere, 2022, 286: 131651. |
17 | Kallawar G A, Barai D P, Bhanvase B A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: a comprehensive review on synthesis methods, performance as photocatalyst and challenges[J]. Journal of Cleaner Production, 2021, 318: 128563. |
18 | Anantharaj S, Karthick K, Kundu S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism[J]. Materials Today Energy, 2017, 6: 1-26. |
19 | Yang Z Z, Wei J J, Zeng G M, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2 [J]. Coordination Chemistry Reviews, 2019, 386: 154-182. |
20 | Boumeriame H, da Silva E S, Cherevan A S, et al. Layered double hydroxide (LDH)-based materials: a mini-review on strategies to improve the performance for photocatalytic water splitting[J]. Journal of Energy Chemistry, 2022, 64: 406-431. |
21 | Zhang J W, Shen B X, Hu Z Z, et al. Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal[J]. Applied Catalysis B: Environmental, 2021, 296: 120376. |
22 | 任静, 谭玲, 赵宇飞, 等. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
Ren J, Tan L, Zhao Y F, et al. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction[J]. CIESC Journal, 2021, 72(1): 398-424. | |
23 | Wang J K, Xu Y Q, Li J X, et al. Highly selective photo-hydroxylation of phenol using ultrathin NiFe-layered double hydroxide nanosheets under visible-light up to 550 nm[J]. Green Chemistry, 2020, 22(24): 8604-8613. |
24 | Huo W C, Cao T, Liu X Y, et al. Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove[J]. Green Energy & Environment, 2019, 4(3): 270-277. |
25 | Rodriguez-Rivas F, Pastor A, de Miguel G, et al. Cr3+ substituted Zn-Al layered double hydroxides as UV-Vis light photocatalysts for NO gas removal from the urban environment[J]. Science of the Total Environment, 2020, 706: 136009. |
26 | Cheng G, Liu X, Song X J, et al. Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: synergic effect of Fe and oxygen vacancies[J]. Applied Catalysis B: Environmental, 2020, 277: 119196. |
27 | Lu Y F, Huang Y, Zhang Y F, et al. Effects of H2O2 generation over visible light-responsive Bi/Bi2O2- x CO3 nanosheets on their photocatalytic NO x removal performance[J]. Chemical Engineering Journal, 2019, 363: 374-382. |
28 | Gu Z Y, Cui Z T, Wang Z J, et al. Carbon vacancies and hydroxyls in graphitic carbon nitride: promoted photocatalytic NO removal activity and mechanism[J]. Applied Catalysis B: Environmental, 2020, 279: 119376. |
29 | Li J X, Xu Y Q, Ding Z Z, et al. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: a thermodynamic and kinetic perspective[J]. Chemical Engineering Journal, 2020, 388: 124248. |
30 | Zou J H, Wang Z T, Guo W, et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups[J]. Applied Catalysis B: Environmental, 2020, 260: 118185. |
31 | Lei B, Cui W, Sheng J P, et al. Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway[J]. Science Bulletin, 2020, 65(6): 467-476. |
32 | Liu Y Y, Chen S, Li K L, et al. Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH[J]. Journal of Colloid and Interface Science, 2022, 606: 1435-1444. |
33 | Zhao Y F, Chen G B, Bian T, et al. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water[J]. Advanced Materials, 2015, 27(47): 7824-7831. |
34 | Tan L, Xu S M, Wang Z L, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie, 2019, 131(34): 11986-11993. |
35 | Liu C, Guo W, Chen J S, et al. Ultrathin ZnTi-LDH nanosheets for photocatalytic aerobic oxidation of aniline based on coordination activation[J]. Catalysis Science & Technology, 2021, 11(1): 162-170. |
36 | 徐振和, 李泓江, 高雨, 等. In2O3/Ag:ZnIn2S4 “Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
Xu Z H, Li H J, G Y, et al. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635. | |
37 | Luna A L, Novoseltceva E, Louarn E, et al. Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2016, 191: 18-28. |
38 | Hao X J, Tan L, Xu Y Q, et al. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500 nm[J]. Industrial & Engineering Chemistry Research, 2020, 59: 3008-3015. |
39 | Yang J, Chen P Y, Dai J, et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3- x catalysts[J]. Energy Conversion and Management, 2021, 247: 114767. |
40 | Huang Y, Gao Y X, Zhang Q, et al. Biocompatible FeOOH-carbon quantum dots nanocomposites for gaseous NO x removal under visible light: improved charge separation and high selectivity[J]. Journal of Hazardous Materials, 2018, 354: 54-62. |
41 | Rodriguez-Rivas F, Pastor A, Barriga C, et al. Zn-Al layered double hydroxides as efficient photocatalysts for NO x abatement[J]. Chemical Engineering Journal, 2018, 346: 151-158. |
42 | Shang H, Li M Q, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation[J]. Environmental Science & Technology, 2019, 53(11): 6444-6453. |
43 | Jin S, Dong G H, Luo J M, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst[J]. Applied Catalysis B: Environmental, 2018, 227: 24-34. |
44 | Yao J, Zhang Y F, Wang Y W, et al. Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability[J]. RSC Advances, 2017, 7(40): 24683-24689. |
45 | Duan Y Y, Wang Y, Gan L Y, et al. Amorphous carbon nitride with three coordinate nitrogen (N3C) vacancies for exceptional NO x abatement in visible light[J]. Advanced Energy Materials, 2021, 11(19): 2004001. |
46 | Zhu G Q, Li S P, Gao J Z, et al. Constructing a 2D/2D Bi2O2CO3/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NO x removal[J]. Applied Surface Science, 2019, 493: 913-925. |
47 | 胡小龙, 公文学, 彭艺, 等. 配体诱导制备NM88(D)/COF-OMe复合材料及可见光芬顿联合降解抗生素磺胺甲嘧啶研究[J]. 化工学报, 2021, 72(9): 4730-4739. |
Hu X L, Gong W X, Peng Y, et al. Construction of NM88(D)/COF-OMe composite via ligand-induced interfacial growth strategy for highly efficient photo-Fenton degradation of antibiotic sulfamerazine under visible light[J]. CIESC Journal, 2021, 72(9): 4730-4739. |
[1] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[2] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[3] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[4] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[5] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[6] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[7] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[8] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[12] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[13] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 293
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||