CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4987-4997.DOI: 10.11949/0438-1157.20221122
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Suijun YANG1,2(), Jiong DING2, Qiyue XU2, Shuliang YE2, Zichao GUO1(), Wanghua CHEN1
Received:
2022-08-08
Revised:
2022-08-31
Online:
2022-12-06
Published:
2022-11-05
Contact:
Zichao GUO
杨遂军1,2(), 丁炯2, 许启跃2, 叶树亮2, 郭子超1(), 陈网桦1
通讯作者:
郭子超
作者简介:
杨遂军(1979—),男,博士研究生,yangsuijun1@sina.com
基金资助:
CLC Number:
Suijun YANG, Jiong DING, Qiyue XU, Shuliang YE, Zichao GUO, Wanghua CHEN. Kinetic predictions from adiabatic accelerating rate calorimetric data by using the model-free methods[J]. CIESC Journal, 2022, 73(11): 4987-4997.
杨遂军, 丁炯, 许启跃, 叶树亮, 郭子超, 陈网桦. 绝热加速量热无模型方法动力学预测[J]. 化工学报, 2022, 73(11): 4987-4997.
Add to citation manager EndNote|Ris|BibTeX
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min | TMRad/ min |
---|---|---|---|---|---|
50 | SIM | 3432415 | 4258816 | 4262877 | 4262893 |
VYA | 3380655 (-1.5%) | 4198628 (-1.4%) | 4202742 (-1.4%) | 4202758 (-1.4%) | |
FR | 830242 (-75.8%) | 1433763 (-66.3%) | 1437120 (-66.3%) | 1437133 (-66.3%) | |
80 | SIM | 26793 | 36108 | 36226 | 36225 |
VYA | 26755 (-0.1%) | 36029 (-0.2%) | 36149 (-0.2%) | 36148 (-0.2%) | |
FR | 12346 (-53.9%) | 20377 (-43.6%) | 20480 (-43.5%) | 20480 (-43.5%) | |
110 | SIM | 445.80 | 656.40 | 662.00 | 662.00 |
VYA | 450.50 (1.1%) | 661.10 (0.7%) | 666.90 (0.7%) | 666.80 (0.7%) | |
FR | 453.30 (1.7%) | 661.30 (0.7%) | 666.40 (0.7%) | 666.30 (0.6%) | |
150 | SIM | 4.65 | 7.74 | 7.91 | 7.91 |
VYA | 4.76 (2.4%) | 7.85 (1.4%) | 8.04 (1.6%) | 8.03 (1.5%) | |
FR | 17.00 (265.6%) | 20.44 (164.1%) | 20.61 (160.6%) | 20.61 (160.6%) | |
180 | SIM | 0.26 | 0.47 | 0.49 | 0.49 |
VYA | 0.26 (0) | 0.48 (2.1%) | 0.50 (2.0%) | 0.50 (2.0%) | |
FR | 3.02 (1061.5%) | 3.27 (595.7%) | 3.29 (571.4%) | 3.29 (571.4%) |
Table 1 Time to reach an content of conversion of α and feature point in n-order reaction under adiabatic predictions
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min | TMRad/ min |
---|---|---|---|---|---|
50 | SIM | 3432415 | 4258816 | 4262877 | 4262893 |
VYA | 3380655 (-1.5%) | 4198628 (-1.4%) | 4202742 (-1.4%) | 4202758 (-1.4%) | |
FR | 830242 (-75.8%) | 1433763 (-66.3%) | 1437120 (-66.3%) | 1437133 (-66.3%) | |
80 | SIM | 26793 | 36108 | 36226 | 36225 |
VYA | 26755 (-0.1%) | 36029 (-0.2%) | 36149 (-0.2%) | 36148 (-0.2%) | |
FR | 12346 (-53.9%) | 20377 (-43.6%) | 20480 (-43.5%) | 20480 (-43.5%) | |
110 | SIM | 445.80 | 656.40 | 662.00 | 662.00 |
VYA | 450.50 (1.1%) | 661.10 (0.7%) | 666.90 (0.7%) | 666.80 (0.7%) | |
FR | 453.30 (1.7%) | 661.30 (0.7%) | 666.40 (0.7%) | 666.30 (0.6%) | |
150 | SIM | 4.65 | 7.74 | 7.91 | 7.91 |
VYA | 4.76 (2.4%) | 7.85 (1.4%) | 8.04 (1.6%) | 8.03 (1.5%) | |
FR | 17.00 (265.6%) | 20.44 (164.1%) | 20.61 (160.6%) | 20.61 (160.6%) | |
180 | SIM | 0.26 | 0.47 | 0.49 | 0.49 |
VYA | 0.26 (0) | 0.48 (2.1%) | 0.50 (2.0%) | 0.50 (2.0%) | |
FR | 3.02 (1061.5%) | 3.27 (595.7%) | 3.29 (571.4%) | 3.29 (571.4%) |
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min |
---|---|---|---|---|
50 | SIM | 7636348 | 50239458 | 166899493 |
VYA | 7554461 (-1.1%) | 50680113 (0.9%) | 173364554 (3.9%) | |
FR | 2683485 (-64.9%) | 40428782 (-19.5%) | 155819398 (-6.6%) | |
80 | SIM | 53330 | 350856 | 1165572 |
VYA | 53340 (0) | 354912 (1.2%) | 1211859 (4.0%) | |
FR | 29833 (-44.1%) | 315057 (-10.2%) | 1139930 (-2.2%) | |
110 | SIM | 810 | 5331 | 17711 |
VYA | 818 (1.0%) | 5406 (1.4%) | 18429 (4.1%) | |
FR | 807 (-0.4%) | 5464 (2.5%) | 18263 (3.1%) | |
150 | SIM | 7.70 | 50.50 | 167.80 |
VYA | 7.80 (1.3%) | 51.40 (1.8%) | 174.80 (4.2%) | |
FR | 21.50 (179.2%) | 69.00 (36.6%) | 192.80 (14.9%) | |
180 | SIM | 0.40 | 2.63 | 8.75 |
VYA | 0.41 (2.5%) | 2.68 (1.9%) | 9.11 (4.1%) | |
FR | 3.31 (727.5%) | 5.91 (124.7%) | 12.45 (42.3%) |
Table 2 Time to reach an content of conversion of α in n-order reaction under isothermal predictions
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min |
---|---|---|---|---|
50 | SIM | 7636348 | 50239458 | 166899493 |
VYA | 7554461 (-1.1%) | 50680113 (0.9%) | 173364554 (3.9%) | |
FR | 2683485 (-64.9%) | 40428782 (-19.5%) | 155819398 (-6.6%) | |
80 | SIM | 53330 | 350856 | 1165572 |
VYA | 53340 (0) | 354912 (1.2%) | 1211859 (4.0%) | |
FR | 29833 (-44.1%) | 315057 (-10.2%) | 1139930 (-2.2%) | |
110 | SIM | 810 | 5331 | 17711 |
VYA | 818 (1.0%) | 5406 (1.4%) | 18429 (4.1%) | |
FR | 807 (-0.4%) | 5464 (2.5%) | 18263 (3.1%) | |
150 | SIM | 7.70 | 50.50 | 167.80 |
VYA | 7.80 (1.3%) | 51.40 (1.8%) | 174.80 (4.2%) | |
FR | 21.50 (179.2%) | 69.00 (36.6%) | 192.80 (14.9%) | |
180 | SIM | 0.40 | 2.63 | 8.75 |
VYA | 0.41 (2.5%) | 2.68 (1.9%) | 9.11 (4.1%) | |
FR | 3.31 (727.5%) | 5.91 (124.7%) | 12.45 (42.3%) |
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRad/ h |
---|---|---|---|---|---|
80 | SIM | 21425 | 23652 | 23656 | 23656 |
VYA | 22145 (3.4%) | 24972 (5.6%) | 24977 (5.6%) | 24977 (5.6%) | |
FR | 9913 (-53.7%) | 12851 (-45.7%) | 12855 (-45.7%) | 12855 (-45.7%) | |
100 | SIM | 918 | 1113 | 1114 | 1114 |
VYA | 926 (0.9%) | 1116 (0.3%) | 1117 (0.3%) | 1117 (0.3%) | |
FR | 685 (-25.4%) | 893 (-19.8%) | 894 (-19.7%) | 894 (-19.7%) | |
110 | SIM | 211.50 | 268.90 | 269.30 | 269.30 |
VYA | 214.60 (1.5%) | 270.20 (0.5%) | 270.70 (0.5%) | 270.60 (0.5%) | |
FR | 210.00 (-0.7%) | 272.20 (1.2%) | 272.60 (1.2%) | 272.60 (1.2%) | |
120 | SIM | 52.20 | 69.40 | 69.60 | 69.60 |
VYA | 53.60 (2.7%) | 71.10 (2.4%) | 71.30 (2.4%) | 71.30 (2.4%) | |
FR | 71.40 (36.8%) | 91.30 (31.6%) | 91.50 (31.5%) | 91.50 (31.5%) | |
150 | SIM | 1.16 | 1.73 | 1.75 | 1.75 |
VYA | 1.24 (6.9%) | 2.04 (17.9%) | 2.08 (18.9%) | 2.07 (18.3%) | |
FR | 5.06 (336.2%) | 6.00 (246.8%) | 6.03 (244.6%) | 6.03 (244.6%) |
Table 3 Time to reach an content of conversion of α and feature point in Kamal reaction under adiabatic predictions
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRad/ h |
---|---|---|---|---|---|
80 | SIM | 21425 | 23652 | 23656 | 23656 |
VYA | 22145 (3.4%) | 24972 (5.6%) | 24977 (5.6%) | 24977 (5.6%) | |
FR | 9913 (-53.7%) | 12851 (-45.7%) | 12855 (-45.7%) | 12855 (-45.7%) | |
100 | SIM | 918 | 1113 | 1114 | 1114 |
VYA | 926 (0.9%) | 1116 (0.3%) | 1117 (0.3%) | 1117 (0.3%) | |
FR | 685 (-25.4%) | 893 (-19.8%) | 894 (-19.7%) | 894 (-19.7%) | |
110 | SIM | 211.50 | 268.90 | 269.30 | 269.30 |
VYA | 214.60 (1.5%) | 270.20 (0.5%) | 270.70 (0.5%) | 270.60 (0.5%) | |
FR | 210.00 (-0.7%) | 272.20 (1.2%) | 272.60 (1.2%) | 272.60 (1.2%) | |
120 | SIM | 52.20 | 69.40 | 69.60 | 69.60 |
VYA | 53.60 (2.7%) | 71.10 (2.4%) | 71.30 (2.4%) | 71.30 (2.4%) | |
FR | 71.40 (36.8%) | 91.30 (31.6%) | 91.50 (31.5%) | 91.50 (31.5%) | |
150 | SIM | 1.16 | 1.73 | 1.75 | 1.75 |
VYA | 1.24 (6.9%) | 2.04 (17.9%) | 2.08 (18.9%) | 2.07 (18.3%) | |
FR | 5.06 (336.2%) | 6.00 (246.8%) | 6.03 (244.6%) | 6.03 (244.6%) |
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRiso/ h |
---|---|---|---|---|---|
80 | SIM | 43611 | 68873 | 71508 | 70566 |
VYA | 48859 (12.0%) | 94362 (37.0%) | 99052 (38.5%) | 98691 (39.9%) | |
FR | 26741 (-38.7%) | 73243 (6.3%) | 77960 (9.0%) | 77601 (10.0%) | |
100 | SIM | 1844 | 4367 | 4778 | 4629 |
VYA | 1938 (5.1%) | 4702 (7.7%) | 5241 (9.7%) | 5146 (11.2%) | |
FR | 1507 (-18.3%) | 4457 (2.1%) | 5002 (4.7%) | 4907 (6.0%) | |
110 | SIM | 416 | 1222 | 1396 | 1332 |
VYA | 438 (5.3%) | 1213 (-0.7%) | 1413 (1.2%) | 1366 (2.6%) | |
FR | 415 (-0.2%) | 1256 (2.8%) | 1458 (4.4%) | 1412 (6.0%) | |
120 | SIM | 100.20 | 362.40 | 438.80 | 410.30 |
VYA | 106.90 (6.7%) | 341.50 (-5.8%) | 419.20 (-4.5%) | 396.60 (-3.3%) | |
FR | 126.30 (26.0%) | 384.20 (6.0%) | 463.30 (5.6%) | 440.50 (7.4%) | |
150 | SIM | 2.05 | 12.30 | 19.96 | 16.49 |
VYA | 2.32 (13.2%) | 12.00 (-2.4%) | 18.06 (-9.5%) | 15.05 (-8.7%) | |
FR | 6.60 (222.0%) | 17.54 (42.6%) | 23.75 (19.0%) | 20.70 (25.5%) |
Table 4 Time to reach an content of conversion of α and feature point in Kamal reaction under isothermal predictions
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRiso/ h |
---|---|---|---|---|---|
80 | SIM | 43611 | 68873 | 71508 | 70566 |
VYA | 48859 (12.0%) | 94362 (37.0%) | 99052 (38.5%) | 98691 (39.9%) | |
FR | 26741 (-38.7%) | 73243 (6.3%) | 77960 (9.0%) | 77601 (10.0%) | |
100 | SIM | 1844 | 4367 | 4778 | 4629 |
VYA | 1938 (5.1%) | 4702 (7.7%) | 5241 (9.7%) | 5146 (11.2%) | |
FR | 1507 (-18.3%) | 4457 (2.1%) | 5002 (4.7%) | 4907 (6.0%) | |
110 | SIM | 416 | 1222 | 1396 | 1332 |
VYA | 438 (5.3%) | 1213 (-0.7%) | 1413 (1.2%) | 1366 (2.6%) | |
FR | 415 (-0.2%) | 1256 (2.8%) | 1458 (4.4%) | 1412 (6.0%) | |
120 | SIM | 100.20 | 362.40 | 438.80 | 410.30 |
VYA | 106.90 (6.7%) | 341.50 (-5.8%) | 419.20 (-4.5%) | 396.60 (-3.3%) | |
FR | 126.30 (26.0%) | 384.20 (6.0%) | 463.30 (5.6%) | 440.50 (7.4%) | |
150 | SIM | 2.05 | 12.30 | 19.96 | 16.49 |
VYA | 2.32 (13.2%) | 12.00 (-2.4%) | 18.06 (-9.5%) | 15.05 (-8.7%) | |
FR | 6.60 (222.0%) | 17.54 (42.6%) | 23.75 (19.0%) | 20.70 (25.5%) |
1 | Townsend D I, Tou J C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30. |
2 | 丁炯, 陈琪, 许启跃, 等. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424. |
Ding J, Chen Q, Xu Q Y, et al. ARC thermal inertia correction method based on C80 data merging[J]. CIESC Journal, 2019, 70(1): 417-424. | |
3 | 魏彤彤, 钱新明, 袁梦琦. 酸、碱污染物对过氧化苯甲酸叔丁酯热危险性影响[J]. 化工学报, 2015, 66(10): 3931-3939. |
Wei T T, Qian X M, Yuan M Q. Thermal hazard analysis for tert-butyl peroxybenzoate contaminated by acid or alkali[J]. CIESC Journal, 2015, 66(10): 3931-3939. | |
4 | 蒋慧灵, 闫松, 魏彤彤. 水分对过氧化苯甲酸叔丁酯热稳定性的影响[J]. 化工学报, 2011, 62(5): 1290-1295. |
Jiang H L, Yan S, Wei T T. Effect of water on thermal stability of tert-butyl peroxy benzoate[J]. CIESC Journal, 2011, 62(5): 1290-1295. | |
5 | Samael V K J, Smitha V S, Sivanesh N E, et al. Reactive thermal hazards of irradiated tributyl phosphate with nitric acid[J]. Thermochimica Acta, 2018, 666: 18-26. |
6 | Roduit B, Hartmann M, Folly P, et al. New kinetic approach for evaluation of hazard indicators based on merging DSC and ARC or large scale tests[J]. Chemical Engineering Transactions, 2016, 48: 37-42. |
7 | Jeraal M I, Roberts K J, McRobbie I, et al. Assessment of the thermal degradation of sodium lauroyl isethionate using predictive isoconversional kinetics and a temperature-resolved analysis of evolved gases[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8112-8122. |
8 | 郭子超, 郝琳, 卫宏远. 一种计算最大反应速率到达时间的新方法[J]. 化工学报, 2016, 67(S1): 22-27. |
Guo Z C, Hao L, Wei H Y. A new method for calculating time to maximum rate under adiabatic condition[J]. CIESC Journal, 2016, 67(S1): 22-27. | |
9 | 朱益, 王浩, 陈利平, 等. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387. |
Zhu Y, Wang H, Chen L P, et al. Calculate time to maximum rate under adiabatic condition by numerical calculation method[J]. CIESC Journal, 2019, 70(1): 379-387. | |
10 | de Jesus Silva A J, Contreras M M, Nascimento C R, et al. Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging[J]. Heliyon, 2020, 6(7): e04573. |
11 | Käser F, Roduit B. Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 231-237. |
12 | 余成明, 彭旭东, 江锦波, 等. 宽温域下氟醚橡胶的加速老化行为和机理研究[J]. 化工学报, 2021, 72(6): 3399-3410. |
Yu C M, Peng X D, Jiang J B, et al. Investigation on accelerated aging behavior and mechanism of fluoroether rubber under wide temperature range[J]. CIESC Journal, 2021, 72(6): 3399-3410. | |
13 | 韩露, 马芳武, 陈实现, 等. 玄武岩纤维增强聚乳酸力学性能及耐老化性能[J]. 化工学报, 2019, 70(3): 1171-1178. |
Han L, Ma F W, Chen S X, et al. Mechanical properties of basalt fiber-reinforced polylactide matrix and aging resistance properties[J]. CIESC Journal, 2019, 70(3): 1171-1178. | |
14 | Stanko M, Stommel M. Kinetic prediction of fast curing polyurethane resins by model-free isoconversional methods[J]. Polymers, 2018, 10(7): 698. |
15 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
16 | Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C: Polymer Symposia, 1964, 6(1): 183-195. |
17 | Flynn J H, Wall L A. General treatment of the thermogravimetry of polymers[J]. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1966, 70A(6): 487-523. |
18 | Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. |
19 | Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids[J]. Journal of Chemical Information and Computer Sciences, 1996, 36(1): 42-45. |
20 | Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[J]. Journal of Computational Chemistry, 1997, 18(3): 393-402. |
21 | Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183. |
22 | Ding J, Chen L X, Xu Q Y, et al. Differential isoconversional kinetic approach for accelerating rate calorimetry[J]. Thermochimica Acta, 2020, 689: 178607. |
23 | Ding J, Zhang X C, Hu D F, et al. Model-free kinetic determination of pre-exponential factor and reaction mechanism in accelerating rate calorimetry[J]. Thermochimica Acta, 2021, 702: 178983. |
24 | Yang S J, Ding J, Zhang X C, et al. Thermal inertias and confidence intervals in the determination of activation energy by isoconversional methods applied for accelerating rate calorimetry[J]. Thermochimica Acta, 2022, 716: 179290. |
25 | Yang S J, Ding J, Zhang X C, et al. Fusion method of model-free and model-fitting for complex reactions in accelerating rate calorimetry[J]. Thermochimica Acta, 2022, 712: 179212. |
26 | Burnham A K, Dinh L N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 479-490. |
27 | Cai J M, Chen Y, Liu R R. Isothermal kinetic predictions from nonisothermal data by using the iterative linear integral isoconversional method[J]. Journal of the Energy Institute, 2014, 87(3): 183-187. |
28 | Granado L, Sbirrazzuoli N. Isoconversional computations for nonisothermal kinetic predictions[J]. Thermochimica Acta, 2021, 697: 178859. |
29 | Sbirrazzuoli N. Model-free isothermal and nonisothermal predictions using advanced isoconversional methods[J]. Thermochimica Acta, 2021, 697: 178855. |
30 | Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes[M]. Cham: Springer International Publishing, 2015. |
31 | Roduit B, Folly P, Berger B, et al. Evaluating sadt by advanced kinetics-based simulation approach[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 153-161. |
32 | 杨庭, 陈利平, 陈网桦, 等. 分解反应自催化性质快速鉴别的实验方法[J]. 物理化学学报, 2014, 30(7): 1215-1222. |
Yang T, Chen L P, Chen W H, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1215-1222. | |
33 | Kamal M R. Thermoset characterization for moldability analysis[J]. Polymer Engineering & Science, 1974, 14(3): 231-239. |
34 | Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat?[J]. Macromolecular Chemistry and Physics, 2007, 208(14): 1592-1597. |
35 | Vyazovkin S, Burnham A K, Favergeon L, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochimica Acta, 2020, 689: 178597. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||