CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5211-5219.DOI: 10.11949/0438-1157.20220848
• Special column for Thermalchemical conversion of biomass and organic solid wastes • Previous Articles Next Articles
Xiaoyang YANG(), Baofeng WANG(), Xutao SONG, Fengling YANG, Fangqin CHENG
Received:
2022-06-17
Revised:
2022-09-12
Online:
2022-12-06
Published:
2022-11-05
Contact:
Baofeng WANG
通讯作者:
王宝凤
作者简介:
杨晓阳(1995—),男,博士研究生,yllskk@163.com
基金资助:
CLC Number:
Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal[J]. CIESC Journal, 2022, 73(11): 5211-5219.
杨晓阳, 王宝凤, 宋旭涛, 杨凤玲, 程芳琴. 污泥与高硫煤共水热碳化过程中硫氮形态转化规律[J]. 化工学报, 2022, 73(11): 5211-5219.
Add to citation manager EndNote|Ris|BibTeX
Sample | Ultimate analysis/% (d) | H/C | O/C | Proximate analysis/% (d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | S | O① | Ash | VM | FC | |||
SS-Raw | 3.51±0.09 | 20.38±0.47 | 3.04±0.06 | 1.92±0.07 | 16.87±0.01 | 1.79±0.07 | 0.62±0.01 | 54.28±0.26 | 45.59±0.24 | 0.13±0.02 |
CS-Raw | 1.07±0.05 | 53.70±0.30 | 2.83±0.04 | 2.93±0.04 | 12.96±0.06 | 0.63±0.01 | 0.18±0.01 | 26.51±0.37 | 18.79±0.56 | 54.70± 0.19 |
S10C0-240 | 1.65±0.04 | 9.99±0.06 | 1.18±0..06 | 0.59±0.07 | 6.65±0.15 | 1.42±0.06 | 0.50±0.01 | 79.94±0.38 | 17.34±0.79 | 2.72±0.41 |
S7C3-240 | 1.06±0.03 | 26.40±0.57 | 1.84±0.07 | 1.73±0.04 | 5.84±0.01 | 0.84±0.01 | 0.17±0.01 | 63.13±0.72 | 16.87±0.74 | 20.00±0.02 |
S5C5-240 | 0.98±0.05 | 34.84±0.81 | 2.15±0.11 | 2.17±0.05 | 6.61±0.99 | 0.74±0.06 | 0.14±0.02 | 53.25±0.39 | 15.85±0.73 | 30.90±0.34 |
S3C7-240 | 0.83±0.02 | 41.91±0.44 | 2.51±0.06 | 2.43±0.05 | 6.68±0.56 | 0.72±0.02 | 0.12±0.01 | 45.64±0.21 | 15.09±0.57 | 39.27±0.36 |
S0C10-240 | 0.66±0.04 | 55.03±0.83 | 2.20±0.06 | 2.38±0.06 | 10.18±2.89 | 0.48±0.01 | 0.14±0.04 | 29.55±0.56 | 13.63±0.88 | 56.82±1.44 |
S5C5-160 | 1.07±0.03 | 34.15±0.27 | 2.28±0.06 | 1.66±0.05 | 11.58±0.30 | 0.80±0.01 | 0.25±0.01 | 49.26±0.71 | 18.55±0.35 | 32.19±0.36 |
S5C5-200 | 1.06±0.03 | 34.70±1.46 | 2.03±0.14 | 1.53±0.05 | 7.69±2.03 | 0.07±0.08 | 0.17±0.05 | 52.99±0.63 | 17.08±0.27 | 29.93±0.36 |
S5C5-280 | 0.90±0.03 | 34.47±0.38 | 1.85±0.07 | 1.83±0.04 | 5.59±0.06 | 0.64±0.02 | 0.12±0.01 | 55.36±0.38 | 13.80±0.21 | 30.84±0.59 |
Table 1 Proximate and ultimate analysis of raw materials and hydrochars
Sample | Ultimate analysis/% (d) | H/C | O/C | Proximate analysis/% (d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | S | O① | Ash | VM | FC | |||
SS-Raw | 3.51±0.09 | 20.38±0.47 | 3.04±0.06 | 1.92±0.07 | 16.87±0.01 | 1.79±0.07 | 0.62±0.01 | 54.28±0.26 | 45.59±0.24 | 0.13±0.02 |
CS-Raw | 1.07±0.05 | 53.70±0.30 | 2.83±0.04 | 2.93±0.04 | 12.96±0.06 | 0.63±0.01 | 0.18±0.01 | 26.51±0.37 | 18.79±0.56 | 54.70± 0.19 |
S10C0-240 | 1.65±0.04 | 9.99±0.06 | 1.18±0..06 | 0.59±0.07 | 6.65±0.15 | 1.42±0.06 | 0.50±0.01 | 79.94±0.38 | 17.34±0.79 | 2.72±0.41 |
S7C3-240 | 1.06±0.03 | 26.40±0.57 | 1.84±0.07 | 1.73±0.04 | 5.84±0.01 | 0.84±0.01 | 0.17±0.01 | 63.13±0.72 | 16.87±0.74 | 20.00±0.02 |
S5C5-240 | 0.98±0.05 | 34.84±0.81 | 2.15±0.11 | 2.17±0.05 | 6.61±0.99 | 0.74±0.06 | 0.14±0.02 | 53.25±0.39 | 15.85±0.73 | 30.90±0.34 |
S3C7-240 | 0.83±0.02 | 41.91±0.44 | 2.51±0.06 | 2.43±0.05 | 6.68±0.56 | 0.72±0.02 | 0.12±0.01 | 45.64±0.21 | 15.09±0.57 | 39.27±0.36 |
S0C10-240 | 0.66±0.04 | 55.03±0.83 | 2.20±0.06 | 2.38±0.06 | 10.18±2.89 | 0.48±0.01 | 0.14±0.04 | 29.55±0.56 | 13.63±0.88 | 56.82±1.44 |
S5C5-160 | 1.07±0.03 | 34.15±0.27 | 2.28±0.06 | 1.66±0.05 | 11.58±0.30 | 0.80±0.01 | 0.25±0.01 | 49.26±0.71 | 18.55±0.35 | 32.19±0.36 |
S5C5-200 | 1.06±0.03 | 34.70±1.46 | 2.03±0.14 | 1.53±0.05 | 7.69±2.03 | 0.07±0.08 | 0.17±0.05 | 52.99±0.63 | 17.08±0.27 | 29.93±0.36 |
S5C5-280 | 0.90±0.03 | 34.47±0.38 | 1.85±0.07 | 1.83±0.04 | 5.59±0.06 | 0.64±0.02 | 0.12±0.01 | 55.36±0.38 | 13.80±0.21 | 30.84±0.59 |
Sulphur species | Binding energy/eV |
---|---|
mercaptan | 162.2±0.2 |
sulfide | 163.3±0.2 |
thiophene | 164.1±0.2 |
sulfoxide | 166.0±0.2 |
sulfone | 168.5±0.5 |
sulfate | 170.0±0.5 |
Table 2 Binding energies of different sulphur species[15-18]
Sulphur species | Binding energy/eV |
---|---|
mercaptan | 162.2±0.2 |
sulfide | 163.3±0.2 |
thiophene | 164.1±0.2 |
sulfoxide | 166.0±0.2 |
sulfone | 168.5±0.5 |
sulfate | 170.0±0.5 |
Nitrogen functionality | Form | Binding energy/eV |
---|---|---|
pyridine-N | N-6 | 398.7±0.4 |
protein-N | N-A | 399.8±0.2 |
pyrrole-N | N-5 | 400.4±0.2 |
inorganic-N | Inorg-N | 402.0±0.5 |
quaternary-N | N-Q | 402.0±0.5 |
nitrogen oxide | N-X | 403.5±0.5 |
Table 3 Binding energies of nitrogen species[21-24]
Nitrogen functionality | Form | Binding energy/eV |
---|---|---|
pyridine-N | N-6 | 398.7±0.4 |
protein-N | N-A | 399.8±0.2 |
pyrrole-N | N-5 | 400.4±0.2 |
inorganic-N | Inorg-N | 402.0±0.5 |
quaternary-N | N-Q | 402.0±0.5 |
nitrogen oxide | N-X | 403.5±0.5 |
1 | Xie L F, Gou L, Wang Y Y, et al. Co-hydrothermal carbonization of sewage sludge and polyvinyl chloride for the production of high-quality solid fuel with low nitrogen content[J]. Science of the Total Environment, 2022, 804(15): 150094. |
2 | Cao Y C, Pawłowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1657-1665. |
3 | He C, Giannis A, Wang J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
4 | Bardhan M, Novera T M, Tabassum M, et al. Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: a review[J]. Journal of Cleaner Production, 2021, 298: 126734. |
5 | Zhao P T, Shen Y F, Ge S F, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Applied Energy, 2014, 131: 345-367. |
6 | He C, Zhao J, Yang Y H, et al. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493. |
7 | Su H C, Zhou X Y, Zheng R D, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the Total Environment, 2021, 754: 142192. |
8 | Saba A, Saha P, Reza M T. Co-hydrothermal carbonization of coal-biomass blend: influence of temperature on solid fuel properties[J]. Fuel Processing Technology, 2017, 167: 711-720. |
9 | Lang Q Q, Zhang B, Liu Z G, et al. Co-hydrothermal carbonization of corn stalk and swine manure: combustion behavior of hydrochar by thermogravimetric analysis[J]. Bioresource Technology, 2019, 271: 75-83. |
10 | Wang T F, Si B C, Gong Z J, et al. Co-hydrothermal carbonization of food waste-woody sawdust blend: interaction effects on the hydrochar properties and nutrients characteristics[J]. Bioresource Technology, 2020, 316: 123900. |
11 | Li W W, Tang Y G, Zhao Q J, et al. Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China[J]. Fuel, 2015, 155: 115-121. |
12 | Yang X Y, Wang B F, Song X T, et al. Co-hydrothermal carbonization of sewage sludge and coal slime with sulfuric acid for N, S doped hydrochar[J]. Journal of Cleaner Production, 2022, 354: 131615. |
13 | Chen F, Zhang M, Ma L L, et al. Nitrogen and sulfur codoped micro-mesoporous carbon sheets derived from natural biomass for synergistic removal of chromium(Ⅵ): adsorption behavior and computing mechanism[J]. Science of the Total Environment, 2020, 730: 138930. |
14 | Shen W Z, Fan W B. Nitrogen-containing porous carbons: synthesis and application[J]. J. Mater. Chem. A, 2013, 1(4): 999-1013. |
15 | Li P S, Hu Y, Yu W, et al. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1126-1132. |
16 | Zhang J, Zuo W, Tian Y, et al. Sulfur transformation during microwave and conventional pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2017, 51(1): 709-717. |
17 | Wang Z X, Zhai Y B, Wang T F, et al. Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge[J]. Environmental Pollution, 2020, 260: 114067. |
18 | Wu J H, Liu J Z, Yuan S, et al. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy & Fuels, 2015, 29(10): 6586-6592. |
19 | Cheng S, Qiao Y, Huang J C, et al. Effect of alkali addition on sulfur transformation during low temperature pyrolysis of sewage sludge[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2253-2261. |
20 | Zhang Z M, Zhao Y, Wang T F. Spirulina hydrothermal carbonization: effect on hydrochar properties and sulfur transformation[J]. Bioresource Technology, 2020, 306: 123148. |
21 | Huang R X, Tang Y Z, Luo L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges[J]. Waste Management, 2021, 121: 276-285. |
22 | Zhuang X Z, Zhan H, Huang Y Q, et al. Denitrification and desulphurization of industrial biowastes via hydrothermal modification[J]. Bioresource Technology, 2018, 254: 121-129. |
23 | Wang Z Q, Huang J C, Wang B, et al. Co-hydrothermal carbonization of sewage sludge and model compounds of food waste: influence of mutual interaction on nitrogen transformation[J]. Science of the Total Environment, 2022, 807: 150997. |
24 | 王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688-2696. |
Wang X D, Li C X, You F T, et al. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 2688-2696. | |
25 | Zhuang X Z, Huang Y Q, Song Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245: 463-470. |
26 | Zhuang X Z, Zhan H, Song Y P, et al. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236(15): 960-974. |
27 | He C, Wang K, Yang Y H, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11): 6872-6880. |
28 | Wang R K, Lei H Y, Liu S Y, et al. The redistribution and migration mechanism of nitrogen in the hydrothermal co‑carbonization process of sewage sludge and lignocellulosic wastes[J]. Science of the Total Environment, 2021, 776(1): 145922. |
29 | Wang Z H, Li Q, Lin Z M, et al. Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals[J]. Fuel, 2016, 164(15): 254-261. |
30 | 姚明宇, 刘艳华, 车得福. 宜宾煤中氮的形态及其变迁规律研究[J]. 西安交通大学学报, 2003, 37(7): 759-763. |
Yao M Y, Liu Y H, Che D F. Investigation of nitrogen functionality in Yibin coal and its char[J]. Journal of Xi’an Jiaotong University, 2003, 37(7): 759-763. |
[1] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
[2] | Jin XU, Jiedong ZHU, Juanli LI, Mengqiu LIU, Heluo GONG. Potential of phosphorus recovery from sludge-based hydrochar by wet chemical method [J]. CIESC Journal, 2021, 72(11): 5779-5789. |
[3] | Junhua FANG,Qi TANG,Yang LI,Yaoyao LI,Qiuying LYU,Zhun FAN,Jian ZHOU,Jin XU. Morphology of phosphorus and metal extraction behavior in sewage sludge during hydrothermal carbonization treatment [J]. CIESC Journal, 2020, 71(7): 3288-3295. |
[4] | Guanhai MO, Shuibo XIE, Taotao ZENG, Yingjiu LIU, Pingli CAI. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar [J]. CIESC Journal, 2020, 71(5): 2352-2362. |
[5] | Yanpei SONG, Xiuzheng ZHUANG, Hao ZHAN, Bin XU, Xiuli YIN, Chuangzhi WU. Investigation on thermochemical conversion characteristics and regularity of co-hydrothermal carbonization solid fuel from sewage sludge and lignite [J]. CIESC Journal, 2020, 71(5): 2320-2332. |
[6] | Chaoqian WANG, Wenlong WANG, Zhe LI, Jing SUN, Zhanlong SONG, Xiqiang ZHAO, Yanpeng MAO. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating [J]. CIESC Journal, 2019, 70(S1): 168-176. |
[7] | Yanpei SONG, Xiuzheng ZHUANG, Hao ZHAN, Nantao WANG, Xiuli YIN, Chuangzhi WU. Investigation on synergistic characteristics of sludge and lignite during co-hydrothermal carbonization [J]. CIESC Journal, 2019, 70(8): 3132-3141. |
[8] | Zeng DAN, Xutong WANG, Beibei YAN, Guanyi CHEN, Peng ZHOU, Wenwu ZHOU, Dazhuoma QIONG. Study on incineration characteristics of Tibetan municipal solid wastes mixed with sewage sludge [J]. CIESC Journal, 2019, 70(8): 3151-3159. |
[9] | HU Yanjun, YU Fan, CHEN Jiang, YU Wenjing, LU Yanjun. Study on release of polycyclic aromatic hydrocarbons during sewage sludge pyrolysis [J]. CIESC Journal, 2018, 69(8): 3662-3669. |
[10] | MENG Xiangdong, HUANG Qunxing, YAN Jianhua, GAO Huaping. Migration and transformation of phosphorus during pyrolysis process of sewage sludge [J]. CIESC Journal, 2018, 69(7): 3208-3215. |
[11] | WANG Xingdong, LI Chunxing, YOU Futian, LIU Xuejiao, WANG Yin. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment [J]. CIESC Journal, 2018, 69(6): 2688-2696. |
[12] | YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin. Properties on NO removal over pyrolyzed sludge carbon [J]. CIESC Journal, 2018, 69(6): 2655-2663. |
[13] | LU Yanjun, HU Yanjun, YU Fan, YU Wenjing. Study on pyrolysis mechanism of carbon and oxygen-containing functional groups in sludge by Py-GC/MS [J]. CIESC Journal, 2018, 69(10): 4378-4385. |
[14] | WANG Jiaxing, LIU Huan, LIU Peng, ZHANG Qiang, LU Geng, HU Hongyun, YAO Hong. Drying characteristics of deep dewatered sludge [J]. CIESC Journal, 2017, 68(6): 2491-2500. |
[15] | SHI Dezhi, ZHANG Jinlu, HU Chunyan, ZHANG Chao, LI Pengfei. Research and application progress of supercritical water oxidation technology on waste sludge treatment [J]. CIESC Journal, 2017, 68(1): 37-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||