[1] |
Grzybek T, Rog? M, PAPP H. The interaction of NO with active carbons promoted with transition metal oxides/hydroxides[J]. Catalysis Today, 2004, 90(1/2):61-68.
|
[2] |
Bueno-LÓpez A, Soriano-Mora J M, GarcÍa-GarcÍa A. Study of the temperature window for the selective reduction of NOx in O2-rich gas mixtures by metal-loaded carbon[J]. Catalysis Communications, 2006, 7(9):678-684.
|
[3] |
IllÁn-GÓmez M, Raymundo-PiÑero E, GARCÍA-GARCÍA A, et al. Catalytic NOx reduction by carbon supporting metals[J]. Applied Catalysis B:Environmental, 1999, 20(4):267-275.
|
[4] |
Xue Y, Lu G, Guo Y, et al. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B:Environmental, 2008, 79(3):262-269.
|
[5] |
LI X, DONG Z, DOU J, et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Processing Technology, 2016, 148:91-98.
|
[6] |
Huang B, HuanG R, Jin D, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today, 2007, 126(3/4):279-283.
|
[7] |
Wu C, Sun X, Shen B, et al. Evaluation of carbon nanotubes produced from toluene steam reforming as catalyst support for selective catalytic reduction of NOx[J]. Journal of the Energy Institute, 2014, 87(4):367-371.
|
[8] |
Yoshikawa M, YASUTAKE A, Mochida I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers[J]. Applied Catalysis A:General, 1998, 173(2):239-245.
|
[9] |
Inguanzo M, DOMÍNgUEZ A, MenÉndez J A, et al. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1):209-222.
|
[10] |
DomÍnguez A, MenÉndezJ A, Inguanzo M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresource Technology, 2006, 97(10):1185-1193
|
[11] |
Deng W Y, Su Y X, Liu S G, et al. Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(17):9169-9179.
|
[12] |
Chen H, Chen D, Hong L. Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char[J]. Applied Energy, 2015, 156:767-775.
|
[13] |
Cha J S, Choi J C, Ko J H, et al. The low-temperature SCR of NO over rice straw and sewage sludge derived char[J]. Chemical Engineering Journal, 2010, 156(2):321-327.
|
[14] |
ROS A, LILLO-RÓDENAS M A, FUENTE E, et al. High surface area materials prepared from sewage sludge-based precursors[J]. Chemosphere, 2006, 65(1):132-140.
|
[15] |
Song X, Zhang Y, Chang C. Novel method for preparing activated carbons with high specific surface area from rice husk[J]. Industrial & Engineering Chemistry Research, 2012, 51(46):15075-15081.
|
[16] |
Liang M, Kang W, Xie K. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. Journal of Natural Gas Chemistry, 2009, 18(1):110-113.
|
[17] |
Fgigueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons[J]. Catalysis Today, 2010, 150(1/2):2-7.
|
[18] |
Xue Y, Guo Y, Zhang Z, et al. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon[J]. Applied Surface Science, 2008, 255(5):2591-2595.
|
[19] |
高志明, 杨向光, 吴越. 活性炭表面含氧基团的生成及对NO的还原作用[J]. 催化学报, 1996, 17(4):327-329. Gao Z M, Yang X G, Wu Y. Formation of surface oxides and nitric oxide reduction on active carbon-supported cupric oxide catalysts[J]. Chinese Journal of Catalysis, 1996, 17(4):327-329.
|
[20] |
Zazo J A, Fraile A F, REY A, et al. Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO[J]. Catalysis Today, 2009, 143(3/4):341-346.
|
[21] |
Yang N, Yu J L, Dou J X, et al. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Processing Technology, 2016, 152:102-107.
|
[22] |
高尚愚, 安部郁夫, 棚田成纪. 表面改性活性炭对苯酚及苯磺酸吸附的研究[J]. 林产化学与工业, 1994, (3):29-34. Gao S Y, Morinomiya J, YOSHIHARU H. Adsorption behavior of phenol and benzene sulfonic acid on modified activated carbon in aqueous solution[J]. Chemistry and Industry of Forest Products, 1994, (3):29-34.
|
[23] |
翟云波, 刘涛, 魏先勋, 等. 城市污泥衍生催化剂上NH3选择性催化还原NOx[J]. 湖南大学学报(自然科学版), 2006, 33(6):110-114. Zhai Y B, Liu T, Wei X X, et al. Selective catalytic reduction of NOx with NH3 over the municipal sewage sludge based catalyst[J]. Journal of Hunan University (Natural Sciences), 2006, 33(6):110-114.
|
[24] |
谢招娣, 马承愚, 宋新山. KOH和ZnCl2活化剂对苎麻秆基活性炭微观结构的影响[J]. 高分子材料与科学, 2012, 28(8):105-109. Xie Z D, Ma C Y, Song X S. Effect of KOH and ZnCl2 activators on microstructure of ramie stalk based activated carbon[J]. High Polymer Materials Science & Engineering, 2012, 28(8):105-109.
|
[25] |
IllÁn-GÓmez M J, Linares-solano A, Lecea S M D. Nitrogen oxide (NO) reduction by activated carbons(1):The role of carbon porosity and surface area[J]. Energy & Fuels, 1993, 7(1):146-154.
|
[26] |
IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(2):Catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1):97-103.
|
[27] |
IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(3):Influence of catalyst loading on the catalytic effect of potassium[J]. Energy & Fuels, 1995, 9(1):104-111.
|
[28] |
IllÁn-GÓmez M J, Linares-solano A, Radovic L R, et al. NO reduction by activated carbons(4):Catalysis by calcium[J]. Energy & Fuels, 1995, 9(1):112-118.
|
[29] |
IllÁn-GÓmez M J, Linares-solano A, Radovic L R. NO reduction by activated carbons(5):Catalytic effect of iron[J]. Energy & Fuels, 1995, 9(3):540-548.
|
[30] |
IllÁn-GÓmez M J, Linares-solano A, LECEA S M D. NO reduction by activated carbon(6):Catalysis by transition metals[J]. Energy & Fuels, 1995, 9(6):976-983.
|
[31] |
IllÁn-GÓmez M J, Linares-solano A, LECEA S M D. NO reduction by activated carbon(7):Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy & Fuels, 1996, 10(1):158-168.
|
[32] |
Yao Z W, Dong H, Shang Y. Catalytic activities of iron phosphide for NO dissociation and reduction with hydrogen[J]. Journal of Alloys & Compounds, 2009, 474(1/2):L10-L13.
|
[33] |
Karroua W, LadriÈRe J, Matralis H. Characterisation of unsupported FeMoS catalysts:stability during reaction and effect of the sulfiding temperature[J]. Journal of Catalysis, 1992, 138(2):640-658.
|
[34] |
Min H J, Dong H L, Bae J W. Reduction and oxidation kinetics of different phases of iron oxides[J]. International Journal of Hydrogen Energy, 2015, 40(6):2613-2620.
|