CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 168-176.DOI: 10.11949/j.issn.0438-1157.20181404
• Energy and environmental engineering • Previous Articles Next Articles
Chaoqian WANG(),Wenlong WANG(),Zhe LI,Jing SUN,Zhanlong SONG,Xiqiang ZHAO,Yanpeng MAO
Received:
2018-11-23
Revised:
2018-12-23
Online:
2019-03-31
Published:
2019-03-31
Contact:
Wenlong WANG
通讯作者:
王文龙
作者简介:
<named-content content-type="corresp-name">王超前</named-content>(1988—),女,博士研究生,<email>985577694@qq.com</email>|王文龙(1977—),男,博士,教授,<email>wwenlong@sdu.edu.cn</email>
基金资助:
CLC Number:
Chaoqian WANG, Wenlong WANG, Zhe LI, Jing SUN, Zhanlong SONG, Xiqiang ZHAO, Yanpeng MAO. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating[J]. CIESC Journal, 2019, 70(S1): 168-176.
王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181404
方法(类别) | 优 点 | 缺 点 |
---|---|---|
厌氧消化(处理) | 可减量、稳定污泥及回收沼气 | 污泥有机质含量低时沼气品质差、不经济,消化后的残渣中仍含有50%左右的有机质与大量病菌、重金属等需处置 |
填埋(处置) | 简单、易操作 | 占用土地、存在有机毒物和重金属浸出风险,也没有实现价值回收 |
堆肥(处置) | 可降解污泥中的有机物,并作为农田肥料 | 重金属会在植物中富集,通过食物链的传递而危害整个生物圈 |
焚烧(处置) | 可高效显著减量污泥并回收部分热能 | 成本高且易形成二英、重金属飞灰等二次污染问题 |
Table 1 Comparison of advantages and disadvantages of main traditional treatment and disposal methods of sewage sludge[5,6,7,8]
方法(类别) | 优 点 | 缺 点 |
---|---|---|
厌氧消化(处理) | 可减量、稳定污泥及回收沼气 | 污泥有机质含量低时沼气品质差、不经济,消化后的残渣中仍含有50%左右的有机质与大量病菌、重金属等需处置 |
填埋(处置) | 简单、易操作 | 占用土地、存在有机毒物和重金属浸出风险,也没有实现价值回收 |
堆肥(处置) | 可降解污泥中的有机物,并作为农田肥料 | 重金属会在植物中富集,通过食物链的传递而危害整个生物圈 |
焚烧(处置) | 可高效显著减量污泥并回收部分热能 | 成本高且易形成二英、重金属飞灰等二次污染问题 |
炭化方法 | 优 点 | 缺 点 |
---|---|---|
直接炭化 | 高温热解炭的稳定性更强,可玻璃化固化重金属 | 耗时耗能、重金属易挥发 |
活化 | 污泥炭的孔隙结构发达,可提高吸附能力,低温热解降低制炭能耗 | 制备过程烦琐,活化剂、酸等大量试剂使用后妥善处理困难,增加重金属浸出风险 |
共热解 | 提高污泥炭的含碳量及孔隙结构,污泥炭的重金属含量小,低温热解降低制炭能耗 | 通过消耗大量生物质才可稀释污泥炭的重金属含量,但对减少重金属迁移的效果不明显 |
微波热解 | 可明显快速提高重金属固化的安全性及炭品质,且具备节能潜力 | 污泥是弱吸波介质,掺混的高品质强吸波介质的分离与回收利用是难题 |
Table 2 Comparison of advantages and disadvantages of main sludge carbonization methods[16,17,18,19,20,21,22,23,24,25,26]
炭化方法 | 优 点 | 缺 点 |
---|---|---|
直接炭化 | 高温热解炭的稳定性更强,可玻璃化固化重金属 | 耗时耗能、重金属易挥发 |
活化 | 污泥炭的孔隙结构发达,可提高吸附能力,低温热解降低制炭能耗 | 制备过程烦琐,活化剂、酸等大量试剂使用后妥善处理困难,增加重金属浸出风险 |
共热解 | 提高污泥炭的含碳量及孔隙结构,污泥炭的重金属含量小,低温热解降低制炭能耗 | 通过消耗大量生物质才可稀释污泥炭的重金属含量,但对减少重金属迁移的效果不明显 |
微波热解 | 可明显快速提高重金属固化的安全性及炭品质,且具备节能潜力 | 污泥是弱吸波介质,掺混的高品质强吸波介质的分离与回收利用是难题 |
测试参数 | SS② | BC③ | CT④ | XT⑤ |
---|---|---|---|---|
介电常数 | 1.64 | 1.59 | 1.61 | 1.87 |
介电损耗因子 | 0.74 | 0.87 | 0.94 | 1.34 |
tanδ | 0.45 | 0.55 | 0.58 | 0.72 |
固定碳含量①/% | 7.94 | 15.86 | 18.15 | 19.26 |
Table 3 Dielectric and proximate analysis parameters of sludge samples
测试参数 | SS② | BC③ | CT④ | XT⑤ |
---|---|---|---|---|
介电常数 | 1.64 | 1.59 | 1.61 | 1.87 |
介电损耗因子 | 0.74 | 0.87 | 0.94 | 1.34 |
tanδ | 0.45 | 0.55 | 0.58 | 0.72 |
固定碳含量①/% | 7.94 | 15.86 | 18.15 | 19.26 |
样品 | 热解时间/min | 产率/% | 比表面积/ (m2/g) | Zn | Cu | ||
---|---|---|---|---|---|---|---|
污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | 污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | ||||
常规热解污泥炭 | 60 | 61 | 47 | 116 | 2.93 | 53 | 2.16 |
协同热解污泥炭 | 15 | 54 | 59 | 172 | 1.07 | 89 | 0.94 |
Table 4 Test results of two sludge chars
样品 | 热解时间/min | 产率/% | 比表面积/ (m2/g) | Zn | Cu | ||
---|---|---|---|---|---|---|---|
污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | 污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | ||||
常规热解污泥炭 | 60 | 61 | 47 | 116 | 2.93 | 53 | 2.16 |
协同热解污泥炭 | 15 | 54 | 59 | 172 | 1.07 | 89 | 0.94 |
半程热解污泥温度状态 | 过程总用时/min | 散热节能率/% | 总节能率/% |
---|---|---|---|
室温冷态 | 15(10+5) | 75 | 69.4 |
实际热态 | 12(10+2) | 80 | 77.8 |
Table 5 Process energy saving rate of semi-pyrolytic sludge under different temperature
半程热解污泥温度状态 | 过程总用时/min | 散热节能率/% | 总节能率/% |
---|---|---|---|
室温冷态 | 15(10+5) | 75 | 69.4 |
实际热态 | 12(10+2) | 80 | 77.8 |
1 | VinayK T, ShangL L. Sludge: a waste or renewable source for energy and resources recovery[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728. |
2 | LiZ J, DengH, YangL, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223. |
3 | YangG, ZhangG M, WangH C. Current state of sludge production, management, treatment and disposal in China[J]. Water Res., 2015, 78: 60-73. |
4 | 黄月娥. 城市污泥5种重金属分布特征及其环境风险评价[D]. 淮南: 安徽理工大学, 2016. |
HuangY E. Distribution characteristics and environmental risk assessment of five heavy metals in sewage sludge[D]. Huainan: AnHui University of Science and Technology, 2016. | |
5 | AlexandrosK, AthanasiosS S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32: 1186-1195. |
6 | XiaoL S, LinT, WangY, et al. Comparative life cycle assessment of sludge management: a case study of Xiamen, China[J]. Journal of Cleaner Production, 2018, 192: 354-363. |
7 | 方平, 唐子君, 钟佩怡, 等. 城市污泥焚烧渣中重金属的浸出特性[J]. 化工进展, 2017, 36(6): 2304-2310. |
FangP, TangZ J, ZhongP Y, et al. A study on leaching characteristics of heavy metals in sludge incineration slag[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2304-2310. | |
8 | 于晓庆, 董滨, 何群彪, 等. 污水污泥和消化污泥热解过程中重全属迁移转化行为对比分析[J]. 净水技术, 2017, 36(12): 27-32. |
YuX Q, DongB, HeQ B, et al. Comparative analysis of heavy metals migration and transformation between sewage sludge and digested sludge during pyrolysis process[J].Water Purification Technology, 2017, 36(12): 27-32. | |
9 | JinZ Y, ChangF M, MengF L, et al. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: characterization and combined in-situ application[J]. Chemosphere, 2017, 184: 1043-1053. |
10 | JorgeP F, AuroraN, AnaM, et al. Biochar from biosolids pyrolysis: a review[J]. Int. J. Environ. Res. Public Health., 2018, 15: 956. |
11 | AnetaM, SebastianW. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS[J]. Waste Management, 2014, 34: 174-179. |
12 | ChenD Z, YinL J, WangH, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2014, 34: 2466-2486. |
13 | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学, 2017. |
WeiS Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: University of Chinese Academy of Sciences, 2017. | |
14 | ChanakaW D U, AndreiV, ApostolosG, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744. |
15 | 戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7): 4029-4035. |
DaiL, RenJ, TaoL, et al. Properties of sewage sludge biochar produced under different pyrolysis temperatures and its sorption capability to Cd2+[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4029-4035. | |
16 | 汤斯奇, 王经臣, JaehacK. 不同热解终温和保留时间下污泥生物质炭孔隙结构特征[J]. 北京大学学报(自然科学版), 2017, 53(5): 890-898. |
TangS Q, WangJ C, JaehacK. Pore Structure characteristics of sludge biochars during pyrolysis with various pyrolysis temperatures and holding times[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 890-898. | |
17 | JinJ W, WangM Y, CaoY C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226. |
18 | 鲁涛, 袁浩然, 王亚琢, 等. 热解温度对污泥生物炭稳定性及养分淋溶特性影响[J]. 化工学报, 2015, 66(7): 2664-2669. |
LuT, YuanH R, WangY Z, et al. Influence of pyrolysis temperature on biochar stability and leaching properties of nutrients contained in biochar[J]. CIESC Journal, 2015, 66(7): 2664-2669. | |
19 | 彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10): 1637-1644. |
PengC F, XiaoT X, LiZ J. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Research of Environmental Sciences, 2017, 30(10): 1637-1644. | |
20 | 王鹤, 李芬, 张彦平, 等. 污水厂剩余污泥材料化和能源利用技术研究进展[J]. 材料导报A: 综述篇, 2016, 30(7): 119-124. |
WangH, LiF, ZhangY P, et al. Research process in materialization and energy utilization of the surplus sludge of sewage treatment[J]. Mater. Rev.: Rev., 2016, 30(7): 119-124. | |
21 | FangS W, YuZ S, LinY. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives[J]. Applied Thermal Engineering, 2017, 111: 292-300. |
22 | JusticeA, SusanH, MichaelC, et al. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 642-657. |
23 | 方琳. 微波能作用下污泥脱水和高温热解的效能与机制[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
FangL. Efficiency and mechanism of sewage sludge dewatering and pyrolysis under treatment of microwave energy[D]. Harbin: Harbin Institute of Technology, 2007. | |
24 | ZhangJ, TianY, YinL L, et al. Insight into the effects of biochar as adsorbent and microwave receptor from one-step microwave pyrolysis of sewage sludge[J]. Environmental Science and Pollution Research, 2018, 25: 18424-18433. |
25 | ElsaA, JamesS, GrahamB, et al. Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal[J]. Journal of Environmental Management, 2017, 196: 119-126. |
26 | 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017, 11(3): 1801-1806. |
GuoZ Y, ShaoJ A, WangX H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1801-1806. | |
27 | WangW L, Zhao, SunJ, et al. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process[J]. Energy, 2015, 87: 678-685. |
28 | WangW L, WangB, SunJ, et al. Numerical simulation of hot-spot effects in microwave heating due to existence of strong microwave-absorbing media[J]. RSC Advances, 2016, 6: 52974-52981. |
29 | YolandaF, AnaA, Angel MJ.. Advances in Induction and Microwave Heating of Mineral and Organic Materials// Microwave Heating Applied to Pyrolysis[M]. Chicago: InTech Publishing, 2011: 723-752. |
30 | 王晴东. 基于多物理场的褐煤微波热解制气特性及机理研究[D]. 武汉: 武汉科技大学, 2016. |
WangQ D. Microwave pyrolysis gasification characteristics and mechanism study of lignite based on the multi-physics field[D]. Wuhan: Wuhan University of Science and Technology, 2016. | |
31 | 王擎, 桓现坤, 寇震, 等. 微波场中油页岩及半焦升温特性[J]. 微波学报 , 2009, 25(1): 92-96. |
WangQ, HuanX K, KouZ, et al. Temperature rising characteristic of oil shale and semi-coke under the microwave field[J]. Journal of Microwave, 2009, 25(1): 92-96. |
[1] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[9] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[10] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[11] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[12] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[13] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
[14] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[15] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||