CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 469-478.DOI: 10.11949/0438-1157.20221078
• Energy and environmental engineering • Previous Articles Next Articles
Yingxi DANG(), Peng TAN(), Xiaoqin LIU, Linbing SUN()
Received:
2022-08-01
Revised:
2022-11-10
Online:
2023-03-20
Published:
2023-01-05
Contact:
Peng TAN, Linbing SUN
通讯作者:
谈朋,孙林兵
作者简介:
党迎喜(1989—),女,博士研究生,201962104033@njtech.edu.cn
基金资助:
CLC Number:
Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating[J]. CIESC Journal, 2023, 74(1): 469-478.
党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478.
Add to citation manager EndNote|Ris|BibTeX
Sample | SBET/ (m2/g) | Vt/ (cm3/g) | Vmicro/ (cm3/g) | 元素组成/%(质量) | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | 吡啶氮 | 吡咯氮 | 四级型氮 | ||||
PPy | 35 | 0.13 | 0.05 | 53.38 | 3.68 | 16.03 | — | — | — |
PPy-450 | 614 | 0.33 | 0.15 | 55.41 | 3.62 | 11.99 | 3.02 | 8.02 | 0.95 |
PPy-550 | 1096 | 0.51 | 0.44 | 52.51 | 3.65 | 9.95 | 3.20 | 5.84 | 0.91 |
PPy-650 | 2134 | 1.08 | 0.89 | 63.27 | 2.45 | 6.71 | 1.36 | 3.20 | 2.15 |
PPy-750 | 3163 | 1.50 | 1.39 | 84.26 | 2.80 | 2.22 | 0.34 | 1.04 | 0.84 |
Table 1 Physicochemical properties of the samples
Sample | SBET/ (m2/g) | Vt/ (cm3/g) | Vmicro/ (cm3/g) | 元素组成/%(质量) | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | 吡啶氮 | 吡咯氮 | 四级型氮 | ||||
PPy | 35 | 0.13 | 0.05 | 53.38 | 3.68 | 16.03 | — | — | — |
PPy-450 | 614 | 0.33 | 0.15 | 55.41 | 3.62 | 11.99 | 3.02 | 8.02 | 0.95 |
PPy-550 | 1096 | 0.51 | 0.44 | 52.51 | 3.65 | 9.95 | 3.20 | 5.84 | 0.91 |
PPy-650 | 2134 | 1.08 | 0.89 | 63.27 | 2.45 | 6.71 | 1.36 | 3.20 | 2.15 |
PPy-750 | 3163 | 1.50 | 1.39 | 84.26 | 2.80 | 2.22 | 0.34 | 1.04 | 0.84 |
1 | Gupta A, Paul A. Carbon capture and sequestration potential in India: a comprehensive review[J]. Energy Procedia, 2019, 160: 848-855. |
2 | Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
3 | Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
4 | Vitillo J G, Smit B, Gagliardi L. Introduction: carbon capture and separation[J]. Chemical Reviews, 2017, 117(14): 9521-9523. |
5 | 江南, 刘冰, 唐忠利, 等. 真空变温吸附捕集干烟道气中CO2的模拟研究[J]. 化工学报, 2019, 70(10): 4032-4042. |
Jiang N, Liu B, Tang Z L, et al. Simulation study on CO2 capture from dry flue gas by temperature vacuum swing adsorption[J]. CIESC Journal, 2019, 70(10): 4032-4042. | |
6 | Wang Y, Zhao L, Otto A, et al. A review of post-combustion CO2 capture technologies from coal-fired power plants[J]. Energy Procedia, 2017, 114: 650-665. |
7 | 许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818. |
Xu M M, Wang S J. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818. | |
8 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
9 | Borhani T N, Wang M H. Role of solvents in CO2 capture processes: the review of selection and design methods[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109299. |
10 | Zhao R K, Liu L C, Zhao L, et al. A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109285. |
11 | Hefti M, Mazzotti M. Postcombustion CO2 capture from wet flue gas by temperature swing adsorption[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15542-15555. |
12 | Chen L J, Deng S, Zhao R K, et al. Temperature swing adsorption for CO2 capture: thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117538. |
13 | Zanco S E, Mazzotti M, Gazzani M, et al. Modeling of circulating fluidized beds systems for post-combustion CO2 capture via temperature swing adsorption[J]. AIChE Journal, 2018, 64(5): 1744-1759. |
14 | Grande C A, Kvamsdal H, Mondino G, et al. Development of moving bed temperature swing adsorption (MBTSA) process for post-combustion CO2 capture: initial benchmarking in a NGCC context[J]. Energy Procedia, 2017, 114: 2203-2210. |
15 | Chen Y X, Shi Y M, Kou H, et al. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2911-2915. |
16 | Siala K, Chowdhury A K, Dang T D, et al. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia[J]. Nature Communications, 2021, 12: 4159. |
17 | Jung W, Park S, Lee K S, et al. Rapid thermal swing adsorption process in multi-beds scale with sensible heat recovery for continuous energy-efficient CO2 capture[J]. Chemical Engineering Journal, 2020, 392: 123656. |
18 | 刘博文, 邓帅, 李双俊, 等. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390. |
Liu B W, Deng S, Li S J, et al. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture[J]. CIESC Journal, 2020, 71(S1): 382-390. | |
19 | Koçak B, Fernandez A I, Paksoy H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. |
20 | Kannan N, Vakeesan D. Solar energy for future world: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 1092-1105. |
21 | Wang S C, Jiang T Y, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science, 2021, 374(6574): 1501-1504. |
22 | Wang T, Wu Y, Shi L, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 2021, 12: 365. |
23 | Mandal J, Fu Y K, Overvig A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319. |
24 | Dai D H, Yang J, Zou Y C, et al. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption[J]. Angewandte Chemie International Edition, 2021, 60(16): 8967-8975. |
25 | Shi J S, Yan N F, Cui H M, et al. Nitrogen doped hierarchically porous carbon derived from glucosamine hydrochloride for CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 21: 444-449. |
26 | Li Z J, Xiao G, Yang Q Y, et al. Computational exploration of metal-organic frameworks for CO2/CH4 separation via temperature swing adsorption[J]. Chemical Engineering Science, 2014, 120: 59-66. |
27 | Sun Y L, Ji Y T, Javed M, et al. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling[J]. Advanced Materials Technologies, 2022, 7(3): 2100803. |
28 | Zeyghami M, Goswami D Y, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 115-128. |
29 | Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544. |
30 | Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066. |
31 | Li T, Zhai Y, He S M, et al.A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763. |
32 | Wang Z, Goyal N, Liu L Y, et al. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases[J]. Chemical Engineering Journal, 2020, 396: 125376. |
33 | Mao S H, Chen X D, Li J H, et al. Self‐sacrifice template fabrication of graphene‐like nitrogen‐doped porous carbon nanosheets for applications in lithium‐ion batteries and oxygen reduction reaction[J]. Energy Technology, 2021, 9(12): 2100666. |
34 | Ghosh A, Razzino C D A, Dasgupta A, et al. Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene[J]. Carbon, 2019, 145: 175-186. |
35 | Peng A Z, Qi S C, Liu X, et al. Fabrication of N-doped porous carbons for enhanced CO2 capture: rational design of an ammoniated polymer precursor[J]. Chemical Engineering Journal,2019, 369: 170-179. |
36 | Sevilla M, Valle‐Vigón P, Fuertes A B. N‐doped polypyrrole‐based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787. |
37 | Kishibayev K K, Serafin J, Tokpayev R R, et al. Physical and chemical properties of activated carbon synthesized from plant wastes and shungite for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106798. |
38 | Kongnoo A, Intharapat P, Worathanakul P, et al. Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures[J]. Journal of Environmental Chemical Engineering, 2016, 4: 73-81. |
39 | Liu X, Qi S C, Peng A Z, et al. Foaming effect of a polymer precursor with a low N content on fabrication of N-doped porous carbons for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 11013-11021. |
40 | Wei H R, Deng S B, Hu B Y, et al. Granular bamboo‐derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores[J]. ChemSusChem, 2012, 5(12): 2354-2360. |
41 | Zhang Z H, Schott J A, Liu M M, et al. Prediction of carbon dioxide adsorption via deep learning[J]. Angewandte Chemie International Edition, 2019, 58(1): 259-263. |
42 | Wilson P, Vijayan S, Prabhakaran K. Nitrogen doped microporous carbon by ZnCl2 activation of protein[J]. Materials Research Express, 2017, 4(9): 095602. |
43 | Bing X F, Wei Y J, Wang M, et al. Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes[J]. Journal of Colloid and Interface Science, 2017, 488: 207-217. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[9] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[14] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[15] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||