1 |
Tan X, Yuan Q L, Qiu M T, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review[J]. Journal of Materials Science & Technology, 2022, 117: 238-250.
|
2 |
陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4): 1486-1497.
|
|
Chen H B, Chen R, Liu M Q, et al. Research progress of force-induced oriented highly thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497.
|
3 |
Chen X J, Su Y H, Reay D, et al. Recent research developments in polymer heat exchangers—a review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1367-1386.
|
4 |
Zhang Y H, Wang W, Zhang F, et al. Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films[J]. Carbon, 2022, 189: 265-275.
|
5 |
Zhou S S, Xu T L, Jin L Y, et al. Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: design of assembled well-oriented boron nitride nanosheets[J]. Composites Science and Technology, 2022, 219: 109259.
|
6 |
Sun D X, Gu T, Mao Y T, et al. Fabricating high-thermal-conductivity, high-strength, and high-toughness polylactic acid-based blend composites via constructing multioriented microstructures[J]. Biomacromolecules, 2022, 23(4): 1789-1802.
|
7 |
Zhang C, Liu T. A review on hybridization modification of graphene and its polymer nanocomposites[J]. Chinese Science Bulletin, 2012, 57(23): 3010-3021.
|
8 |
Liu X X, Huang Y Z, Huang Z X. Compatibilizing and functionalizing polypropylene/polyethylene by in-situ exfoliating hexagonal boron nitride at interface[J]. Composites Science and Technology, 2022, 221: 109354.
|
9 |
Mu X, Wu X F, Zhang T, et al. Thermal transport in graphene oxide—from ballistic extreme to amorphous limit[J]. Scientific Reports, 2014, 4: 3909.
|
10 |
Zhang H J, Fonseca A F, Cho K. Tailoring thermal transport property of graphene through oxygen functionalization[J]. The Journal of Physical Chemistry C, 2014, 118(3): 1436-1442.
|
11 |
Liu L Q, Gao Y, Liu Q, et al. High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films[J]. Small, 2013, 9(14): 2466-2472.
|
12 |
Garcia P S, Oliveira Y, Valim F, et al. Tailoring the graphene oxide chemical structure and morphology as a key to polypropylene nanocomposite performance[J]. Polymer Composites, 2021, 42(11): 6213-6231.
|
13 |
Yu W, Xie H Q, Li F X, et al. Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions[J]. Applied Physics Letters, 2013, 103(14): 141913.
|
14 |
Zhou Y, Li L, Chen Y, et al. Enhanced mechanical properties of epoxy nanocomposites based on graphite oxide with amine-rich surface[J]. RSC Advances, 2015, 5(119): 98472-98481.
|
15 |
Graziano A, Garcia C, Jaffer S, et al. Functionally tuned nanolayered graphene as reinforcement of polyethylene nanocomposites for lightweight transportation industry[J]. Carbon, 2020, 169: 99-110.
|
16 |
Sreenatha P R, Mandal S, Singh S, et al. Remarkable synergetic effect by in-situ covalent hybridization of carbon dots with graphene oxide and carboxylated acrylonitrile butadiene rubber[J]. Polymer, 2019, 175: 283-293.
|
17 |
Wu X, Mu F W, Zhao H Y. Recent progress in the synthesis of graphene/cnt composites and the energy-related applications[J]. Journal of Materials Science & Technology, 2020, 55: 16-34.
|
18 |
Mahadevaswamy M B, Aradhya R, Bhattacharya S, et al. Effect of hybrid carbon nanofillers at percolation on electrical and mechanical properties of glass fiber reinforced epoxy[J]. Journal of Applied Polymer Science, 2022, 139(26): e52439.
|
19 |
Li H Y, Yang L, Weng G S, et al. Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes[J]. Journal of Materials Chemistry A, 2015, 3(44): 22385-22392.
|
20 |
Zheng Y, Li D, Ahmed Z, et al. Carbon nanotube-on-graphene heterostructures[J]. Journal of Electronic Materials, 2020, 49(11): 6806-6816.
|
21 |
Mi X Q, Zhong L Y, Wei F, et al. Fabrication of halloysite nanotubes/reduced graphene oxide hybrids for epoxy composites with improved thermal and mechanical properties[J]. Polymer Testing, 2019, 76: 473-480.
|
22 |
Kumar R, Alaferdov A V, Singh R K, et al. Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding[J]. Composites Part B: Engineering, 2019, 168: 66-76.
|
23 |
Kumar R, Sahoo S, Tan W K, et al. Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor[J]. Journal of Energy Storage, 2021, 40: 102724.
|
24 |
Shang H, Ke L, Xu W X, et al. Microwave-assisted direct growth of carbon nanotubes at graphene oxide nanosheets to promote the stereocomplexation and performances of polylactides[J]. Industrial & Engineering Chemistry Research, 2022, 61(2): 1111-1121.
|
25 |
Xu H, Wu D, Yang X, et al. Thermostable and impermeable "nano-barrier walls" constructed by poly(lactic acid) stereocomplex crystal decorated graphene oxide nanosheets[J]. Macromolecules, 2015, 48(7): 2127-2137.
|
26 |
Xie L, Shan B, Sun X, et al. Natural fiber-anchored few-layer graphene oxide nanosheets for ultrastrong interfaces in poly(lactic acid)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3279-3289.
|
27 |
Yang G J, Liu Z P, Weng S T, et al. Iron carbide allured lithium metal storage in carbon nanotube cavities[J]. Energy Storage Materials, 2021, 36: 459-465.
|
28 |
Schniepp H C, Li J, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B, 2006, 110(17): 8535-8539.
|
29 |
Bajpai R, Wagner H D. Fast growth of carbon nanotubes using a microwave oven[J]. Carbon, 2015, 82: 327-336.
|
30 |
Wang H, Wang Y F, Cao X W, et al. Vibrational properties of graphene and graphene layers[J]. Journal of Raman Spectroscopy, 2009, 40(12): 1791-1796.
|
31 |
Xu H, Adolfsson K H, Xie L, et al. Zero-dimensional and highly oxygenated graphene oxide for multifunctional poly(lactic acid) bionanocomposites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5618-5631.
|
32 |
Xu H, Xie L, Wu D, et al. Immobilized graphene oxide nanosheets as thin but strong nanointerfaces in biocomposites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2211-2222.
|
33 |
石兴达, 陈华艳, 戈亚南, 等. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269.
|
|
Shi X D, Chen H Y, Ge Y A, et al. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity[J]. CIESC Journal, 2022, 73(5): 2262-2269.
|
34 |
蔡楚玥, 方晓明, 张正国, 等. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
|
|
Cai C Y, Fang X M, Zhang Z G, et al. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes[J]. CIESC Journal, 2022, 73(7): 2874-2884.
|