CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1205-1215.DOI: 10.11949/0438-1157.20221345
• Process system engineering • Previous Articles Next Articles
Xuerong GU(), Shuoshi LIU, Siyu YANG()
Received:
2022-10-11
Revised:
2023-01-03
Online:
2023-04-19
Published:
2023-03-05
Contact:
Siyu YANG
通讯作者:
杨思宇
作者简介:
顾学荣(1997—),男,硕士研究生,202120124398@mail.scut.edu.cn
基金资助:
CLC Number:
Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model[J]. CIESC Journal, 2023, 74(3): 1205-1215.
顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215.
Add to citation manager EndNote|Ris|BibTeX
函数 | 参数 |
---|---|
Hartman3 | |
Hartman6 | |
Table 1 Parameters related to Hartman3 and Hartman6
函数 | 参数 |
---|---|
Hartman3 | |
Hartman6 | |
测试函数 | 变量维度 | 初始样本点数 | 最大迭代次数 |
---|---|---|---|
Six-hump | 2 | 20 | 400 |
Branin | 2 | 20 | 400 |
GoldPrice | 2 | 20 | 400 |
Hartman3 | 3 | 30 | 400 |
Shekekl5 | 4 | 40 | 400 |
Shekekl7 | 4 | 40 | 400 |
Shekekl10 | 4 | 40 | 400 |
Hartman6 | 6 | 60 | 400 |
Table 2 Test functions
测试函数 | 变量维度 | 初始样本点数 | 最大迭代次数 |
---|---|---|---|
Six-hump | 2 | 20 | 400 |
Branin | 2 | 20 | 400 |
GoldPrice | 2 | 20 | 400 |
Hartman3 | 3 | 30 | 400 |
Shekekl5 | 4 | 40 | 400 |
Shekekl7 | 4 | 40 | 400 |
Shekekl10 | 4 | 40 | 400 |
Hartman6 | 6 | 60 | 400 |
测试函数 | 变量维度 | EGO算法 | 并行EGO算法 | |||||
---|---|---|---|---|---|---|---|---|
q=1 | q=2 | q=4 | q=6 | q=8 | q=10 | |||
Six-hump | 2 | 29.4 | 16.2 | 9.0 | 6.9 | 6.1 | 4.4 | |
Branin | 2 | 31.9 | 14.5 | 10.8 | 7.5 | 6.2 | 5.3 | |
GoldPrice | 2 | 97.8 | 47.3 | 24.3 | 21.2 | 15.6 | 11.6 | |
Hartman3 | 3 | 16.0 | 14.0 | 9.0 | 7.0 | 6.0 | 4.0 | |
Shekekl5 | 4 | 67.9 | 37.9 | 17.7 | 13.7 | 10.4 | 9.6 | |
Shekekl7 | 4 | 165.0 | 54.1 | 33.5 | 19.8 | 17.2 | 13.0 | |
Shekekl10 | 4 | 84.6 | 43.3 | 26.5 | 17.0 | 12.6 | 10.9 | |
Hartman6 | 6 | 28.7 | 12.6 | 8.3 | 6.9 | 5.7 | 4.9 |
Table 3 The number of iterations required to converge to the optimal solution
测试函数 | 变量维度 | EGO算法 | 并行EGO算法 | |||||
---|---|---|---|---|---|---|---|---|
q=1 | q=2 | q=4 | q=6 | q=8 | q=10 | |||
Six-hump | 2 | 29.4 | 16.2 | 9.0 | 6.9 | 6.1 | 4.4 | |
Branin | 2 | 31.9 | 14.5 | 10.8 | 7.5 | 6.2 | 5.3 | |
GoldPrice | 2 | 97.8 | 47.3 | 24.3 | 21.2 | 15.6 | 11.6 | |
Hartman3 | 3 | 16.0 | 14.0 | 9.0 | 7.0 | 6.0 | 4.0 | |
Shekekl5 | 4 | 67.9 | 37.9 | 17.7 | 13.7 | 10.4 | 9.6 | |
Shekekl7 | 4 | 165.0 | 54.1 | 33.5 | 19.8 | 17.2 | 13.0 | |
Shekekl10 | 4 | 84.6 | 43.3 | 26.5 | 17.0 | 12.6 | 10.9 | |
Hartman6 | 6 | 28.7 | 12.6 | 8.3 | 6.9 | 5.7 | 4.9 |
符号 | 物理意义 | 下限 | 上限 |
---|---|---|---|
x1 | 氨气( | 5000 | 7000 |
x2 | 闪蒸器气相分数 | 0.05 | 0.35 |
x3 | 闪蒸器操作压力/kPa | 1.0 | 1.4 |
x4 | 换热器1换热温度/℃ | 40 | 50 |
x5 | 泵压(泵1)/kPa | 1450 | 1550 |
x6 | 预热器换热温度/℃ | 10200 | 10700 |
x7 | 精馏塔回流比 | 0.4 | 0.6 |
x8 | 精馏塔塔顶采出率 | 0.45 | 0.65 |
x9 | 过冷器换热温度/℃ | 10 | 15 |
x10 | 压力调节阀/kPa | 70 | 80 |
x11 | 压缩机排气压力/kPa | 100 | 120 |
x12 | 换热器2换热温度/℃ | 35 | 45 |
x13 | 吸收器换热温度/℃ | 40 | 50 |
x14 | 泵压(泵2)/kPa | 700 | 900 |
x15 | 出口氨溶液(S)分流率 | 0.01 | 0.05 |
Table 4 Optimization variables and their constraints on ammonia absorption refrigeration
符号 | 物理意义 | 下限 | 上限 |
---|---|---|---|
x1 | 氨气( | 5000 | 7000 |
x2 | 闪蒸器气相分数 | 0.05 | 0.35 |
x3 | 闪蒸器操作压力/kPa | 1.0 | 1.4 |
x4 | 换热器1换热温度/℃ | 40 | 50 |
x5 | 泵压(泵1)/kPa | 1450 | 1550 |
x6 | 预热器换热温度/℃ | 10200 | 10700 |
x7 | 精馏塔回流比 | 0.4 | 0.6 |
x8 | 精馏塔塔顶采出率 | 0.45 | 0.65 |
x9 | 过冷器换热温度/℃ | 10 | 15 |
x10 | 压力调节阀/kPa | 70 | 80 |
x11 | 压缩机排气压力/kPa | 100 | 120 |
x12 | 换热器2换热温度/℃ | 35 | 45 |
x13 | 吸收器换热温度/℃ | 40 | 50 |
x14 | 泵压(泵2)/kPa | 700 | 900 |
x15 | 出口氨溶液(S)分流率 | 0.01 | 0.05 |
变量 | q=1 | q=2 | q=4 | q=6 | q=8 | q=10 |
---|---|---|---|---|---|---|
x1 | 7000.00 | 5954.92 | 5959.70 | 5950.70 | 5952.17 | 5953.89 |
x2 | 0.16 | 0.20 | 0.24 | 0.14 | 0.13 | 0.17 |
x3 | 800.67 | 807.86 | 806.46 | 804.51 | 804.41 | 803.06 |
x4 | 42.79 | 46.63 | 48.87 | 46.58 | 47.45 | 48.16 |
x5 | 1550.00 | 1497.80 | 1507.33 | 1506.61 | 1500.00 | 1497.38 |
x6 | 10.00 | 5.92 | 7.63 | 6.34 | 5.95 | 5.71 |
x7 | 0.47 | 0.48 | 0.45 | 0.51 | 0.46 | 0.52 |
x8 | 0.65 | 0.53 | 0.61 | 0.57 | 0.57 | 0.56 |
x9 | 10.00 | 11.95 | 12.61 | 10.00 | 10.00 | 10.92 |
x10 | 70.00 | 74.51 | 70.67 | 76.00 | 71.21 | 71.00 |
x11 | 100.24 | 110.65 | 100.00 | 107.04 | 106.37 | 108.15 |
x12 | 43.83 | 39.79 | 42.72 | 41.98 | 45.00 | 41.01 |
x13 | 50.00 | 42.41 | 40.00 | 45.80 | 44.00 | 40.42 |
x14 | 800.00 | 819.71 | 813.15 | 816.92 | 806.09 | 808.41 |
x15 | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 |
绝对误差 | 0.1566 | 0.0041 | 0.0010 | 0.00058 | 0.00044 | 0.00016 |
Table 5 The results of parameter optimization
变量 | q=1 | q=2 | q=4 | q=6 | q=8 | q=10 |
---|---|---|---|---|---|---|
x1 | 7000.00 | 5954.92 | 5959.70 | 5950.70 | 5952.17 | 5953.89 |
x2 | 0.16 | 0.20 | 0.24 | 0.14 | 0.13 | 0.17 |
x3 | 800.67 | 807.86 | 806.46 | 804.51 | 804.41 | 803.06 |
x4 | 42.79 | 46.63 | 48.87 | 46.58 | 47.45 | 48.16 |
x5 | 1550.00 | 1497.80 | 1507.33 | 1506.61 | 1500.00 | 1497.38 |
x6 | 10.00 | 5.92 | 7.63 | 6.34 | 5.95 | 5.71 |
x7 | 0.47 | 0.48 | 0.45 | 0.51 | 0.46 | 0.52 |
x8 | 0.65 | 0.53 | 0.61 | 0.57 | 0.57 | 0.56 |
x9 | 10.00 | 11.95 | 12.61 | 10.00 | 10.00 | 10.92 |
x10 | 70.00 | 74.51 | 70.67 | 76.00 | 71.21 | 71.00 |
x11 | 100.24 | 110.65 | 100.00 | 107.04 | 106.37 | 108.15 |
x12 | 43.83 | 39.79 | 42.72 | 41.98 | 45.00 | 41.01 |
x13 | 50.00 | 42.41 | 40.00 | 45.80 | 44.00 | 40.42 |
x14 | 800.00 | 819.71 | 813.15 | 816.92 | 806.09 | 808.41 |
x15 | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 |
绝对误差 | 0.1566 | 0.0041 | 0.0010 | 0.00058 | 0.00044 | 0.00016 |
1 | 杨路, 刘硕士, 罗小艳, 等. MTO烯烃分离过程的多目标操作优化[J]. 化工学报, 2020, 71(10): 4720-4732. |
Yang L, Liu S S, Luo X Y, et al. Multi-objective operation optimization of olefin separation process for MTO plant[J]. CIESC Journal, 2020, 71(10): 4720-4732. | |
2 | 陈志杰, 金晓明. 精馏塔系的软测量建模与优化策略研究[J]. 计算机与应用化学, 2015, 32(3): 261-265. |
Chen Z J, Jin X M. Research of soft sensor and optimization on distillation column system[J]. Computers and Applied Chemistry, 2015, 32(3): 261-265. | |
3 | Javaloyes-Antón J, Caballero J A, Ruiz-Femenia R. Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15621-15634. |
4 | Jiang P, Du W L. Multi-objective modeling and optimization for scheduling of cracking furnace systems[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 992-999. |
5 | Inamdar S V, Gupta S K, Saraf D N. Multi-objective optimization of an industrial crude distillation unit using the Elitist non-dominated sorting genetic algorithm[J]. Chemical Engineering Research and Design, 2004, 82(5): 611-623. |
6 | 刘涛, 苏成利. 气体分馏装置的流程模拟及多目标优化[J]. 石油化工高等学校学报, 2013, 26(1): 76-80. |
Liu T, Su C L. Simulation analysis and multi-objective optimization of gas fractionation unit[J]. Journal of Petrochemical Universities, 2013, 26(1): 76-80. | |
7 | Reddy P S, Rani K Y, Patwardhan S C. Multi-objective optimization of a reactive batch distillation process using reduced order model[J]. Computers & Chemical Engineering, 2017, 106: 40-56. |
8 | Tang M, Liu Y M, Durlofsky L J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[J]. Journal of Computational Physics, 2020, 413: 109456. |
9 | Slot R M M, Sørensen J D, Sudret B, et al. Surrogate model uncertainty in wind turbine reliability assessment[J]. Renewable Energy, 2020, 151: 1150-1162. |
10 | 范才彬. 基于稀疏表达的多项式响应面模型及其仿真应用研究[D]. 武汉: 华中科技大学, 2015. |
Fan C B. Sparsity-promoting polynomial response surface and its application in simulation[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
11 | 龙腾, 刘建, WANG G Gary, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14): 79-105. |
Long T, Liu J, Wang G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105. | |
12 | Eason J, Cremaschi S. Adaptive sequential sampling for surrogate model generation with artificial neural networks[J]. Computers & Chemical Engineering, 2014, 68: 220-232. |
13 | 张琳, 汪廷华, 周慧颖. 基于群智能算法的SVR参数优化研究进展[J]. 计算机工程与应用, 2021, 57(16): 50-64. |
Zhang L, Wang T H, Zhou H Y. Research progress on parameter optimization of SVR based on swarm intelligence algorithm[J]. Computer Engineering and Applications, 2021, 57(16): 50-64. | |
14 | Zhan D W, Qian J C, Cheng Y S. Pseudo expected improvement criterion for parallel EGO algorithm[J]. Journal of Global Optimization, 2017, 68(3): 641-662. |
15 | González-Gorbeña E, Qassim R Y, Rosman P. Optimisation of hydrokinetic turbine array layouts via surrogate modelling[J]. Renewable Energy, 2016, 93: 45-57. |
16 | Yu H, Tan Y, Sun C, et al. An adaptive model selection strategy for surrogate-assisted particle swarm optimization algorithm[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI). Los Alamitos: IEEE Computer Society Press, 2016: 1-8. |
17 | Liau L C K, Yang T C K, Tsai M T. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications, 2004, 26(2): 247-255. |
18 | Singh P, Couckuyt I, Elsayed K, et al. Shape optimization of a cyclone separator using multi-objective surrogate-based optimization[J]. Applied Mathematical Modelling, 2016, 40(5/6): 4248-4259. |
19 | 祁荣宾, 何镓梁, 靳文浩, 等. 基于Kriging代理模型的PX氧化过程优化[J]. 华东理工大学学报(自然科学版), 2012, 38(6): 712-717. |
Qi R B, He J L, Jin W H, et al. PX oxidation process optimization based on Kriging surrogate model[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2012, 38(6): 712-717. | |
20 | 刘思乐, 王修纲, 吴静, 等. 基于Kriging代理模型的复杂精馏系统操作参数优化[J]. 石油炼制与化工, 2020, 51(1): 114-120. |
Liu S L, Wang X G, Wu J, et al. Operation parameter optimization of complex distillation system based on Kriging surrogate[J]. Petroleum Processing and Petrochemicals, 2020, 51(1): 114-120. | |
21 | Ge X L, Yuan X G, Ao C, et al. Simulation based approach to optimal design of dividing wall column using random search method[J]. Computers & Chemical Engineering, 2014, 68: 38-46. |
22 | Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
23 | Krige D. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. |
24 | Sacks J, Welch W, Mitchell T J, et al. Design and analysis of computer experiments: rejoinder[J]. Statistical Science, 1989, 4: 433-435. |
25 | Cressie N. The origins of Kriging[J]. Mathematical Geology, 1990, 22(3): 239-252. |
26 | ForresterA I J, SóbesterA, KeaneA J. Engineering Design via Surrogate Modelling: A Practical Guide[M]. Chichester, West Sussex, England: J. Wiley, 2008. |
27 | Xing J, Luo Y, Gao Z. A global optimization strategy based on the Kriging surrogate model and parallel computing[J]. Structural and Multidisciplinary Optimization, 2020, 62(1): 405-417. |
28 | Toal D J J, Bressloff N W, Keane A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5): 1240-1252. |
29 | Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39(3): 308-319. |
30 | Lophaven S N, Nielsen H B, Søndergaard J. DACE: a Matlab Kriging Toolbox[M]. Lyngby, Denmark: IMM, Informatics and Mathematical Modelling, The Technical University of Denmark, 2002. |
31 | Viana F A C, Haftka R T, Watson L T. Efficient global optimization algorithm assisted by multiple surrogate techniques[J]. Journal of Global Optimization, 2013, 56(2): 669-689. |
32 | Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
33 | Liu S, Qian Y, Li D, et al. Multi-scenario scheduling optimization for a novel double-stage ammonia absorption refrigeration system incorporating an organic Rankine cycle[J]. Energy Conversion and Management, 2022, 270: 116170. |
[1] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[2] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
[3] | Senshan CAO, Feng XU, Xionglin LUO. Process simulation of stream circulation system based on stability: [J]. CIESC Journal, 2022, 73(3): 1256-1269. |
[4] | Qian LIU, Xianglan ZHANG, Zhiping LI, Zhuoqi LI, Hong YU. Multiscale screening of ionic liquids as extractive solvents for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(11): 5011-5024. |
[5] | Li LIU, Peng JIANG, Wei WANG, Tonghuan ZHANG, Liwen MU, Xiaohua LU, Jiahua ZHU. Coupling process simulation and random forest model for analyzing and predicting biomass-to-hydrogen conversion [J]. CIESC Journal, 2022, 73(11): 5230-5239. |
[6] | Kefan ZHAO, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimal design for dividing wall column using online Kriging surrogate model-based optimization method [J]. CIESC Journal, 2022, 73(1): 332-341. |
[7] | Zixuan HUANG, Huan CHEN, Hai LI, Minglong WANG, Guangjin CHEN, Bei LIU. Process simulation and energy consumption analysis of CO2/N2 pilot-scale separation using ZIF-8 slurry [J]. CIESC Journal, 2022, 73(1): 322-331. |
[8] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
[9] | Jianyuan XU, Yanyang WU, Jumei XU, Yangfeng PENG. Study on vapor-liquid equilibria and distillation simulation of 1,3,5-trimethylbenzene-1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene-2-ethyltoluene at 2 kPa [J]. CIESC Journal, 2021, 72(9): 4504-4510. |
[10] | Zhenxing SONG, Xianbao CUI, Ying ZHANG, Xuemei ZHANG, Jie HE, Tianyang FENG, Jixiao WANG. Synthesis of n-hexyl acetate via reactive distillation catalyzed by mixed ionic liquids [J]. CIESC Journal, 2021, 72(8): 4155-4165. |
[11] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[12] | LU Zhibin, XIE Xing, LU Sida, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate model-based optimal design of multi-stage nanofiltration separation system for saline wastewater [J]. CIESC Journal, 2021, 72(3): 1400-1408. |
[13] | LU Zhibin, QU Jinghui, LIU Hua, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network [J]. CIESC Journal, 2021, 72(3): 1496-1503. |
[14] | Hui YANG, Wenhao DAI, Rongxiu LU, Jianyong ZHU. Simulation of rare earth extraction process based on separation coefficient correction [J]. CIESC Journal, 2020, 71(7): 3180-3190. |
[15] | Yonghou XIAO, Hongyan XIAO, Benyuan LI, Jianliang QIN, Shuang QIU, Gaohong HE. Optimization of helium/methane adsorption separation process based on Aspen Adsorption simulation [J]. CIESC Journal, 2019, 70(7): 2556-2563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||