CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1216-1227.DOI: 10.11949/0438-1157.20221474
• Process system engineering • Previous Articles Next Articles
Jianghuai ZHANG(), Zhong ZHAO()
Received:
2022-11-10
Revised:
2022-12-30
Online:
2023-04-19
Published:
2023-03-05
Contact:
Zhong ZHAO
通讯作者:
赵众
作者简介:
张江淮(1997—),男,硕士研究生,zjh9797@yeah.net
基金资助:
CLC Number:
Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application[J]. CIESC Journal, 2023, 74(3): 1216-1227.
张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227.
Add to citation manager EndNote|Ris|BibTeX
操作点 | 出口MAPD浓度的 标准差 | 催化剂选择性的 标准差 |
---|---|---|
0.03%操作点 | 0.0067 | 1.74 |
0.05%操作点 | 0.0023 | 1.05 |
0.075%操作点 | 0.0048 | 1.16 |
Table 1 Standard deviation of system prediction error
操作点 | 出口MAPD浓度的 标准差 | 催化剂选择性的 标准差 |
---|---|---|
0.03%操作点 | 0.0067 | 1.74 |
0.05%操作点 | 0.0023 | 1.05 |
0.075%操作点 | 0.0048 | 1.16 |
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.0531 | 3.10 | 2.62 | 3.22 | 529 |
线性MVC3 | 0.0589 | 3.19 | 6.18 | 3.56 | 626 |
非线性MPC | 0.0728 | 5.13 | 12.18 | 7.89 | 786 |
Table 2 Performance comparison of three controllers (0.05% operating point)
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.0531 | 3.10 | 2.62 | 3.22 | 529 |
线性MVC3 | 0.0589 | 3.19 | 6.18 | 3.56 | 626 |
非线性MPC | 0.0728 | 5.13 | 12.18 | 7.89 | 786 |
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.1338 | 15.69 | 2.56 | 2.96 | 756 |
线性MVC3 | 0.5570 | >31.30 | 2.72 | 8.85 | >1500 |
非线性MPC | 0.4032 | 25.36 | 10.68 | 6.43 | 1235 |
Table 3 Performance comparison of three controllers (0.03% operating point)
控制方法 | ISE指标 | 超调量/% | 调节时间/s | ||
---|---|---|---|---|---|
输出1 | 输出2 | 输出1 | 输出2 | ||
所提方法 | 0.1338 | 15.69 | 2.56 | 2.96 | 756 |
线性MVC3 | 0.5570 | >31.30 | 2.72 | 8.85 | >1500 |
非线性MPC | 0.4032 | 25.36 | 10.68 | 6.43 | 1235 |
操作方式 | 选择性均值/% | 选择性 标准差/% | 出口MAPD浓度均值/% | 出口MAPD浓度标准差 | 配氢比均值 | 配氢比标准差 |
---|---|---|---|---|---|---|
手动 | 70.70 | 3.56 | 0.0470 | 0.0182 | 1.53 | 0.032 |
自动 | 76.38 | 2.98 | 0.0489 | 0.0079 | 1.48 | 0.014 |
Table 4 Comparison of reactor indexes before and after advanced control
操作方式 | 选择性均值/% | 选择性 标准差/% | 出口MAPD浓度均值/% | 出口MAPD浓度标准差 | 配氢比均值 | 配氢比标准差 |
---|---|---|---|---|---|---|
手动 | 70.70 | 3.56 | 0.0470 | 0.0182 | 1.53 | 0.032 |
自动 | 76.38 | 2.98 | 0.0489 | 0.0079 | 1.48 | 0.014 |
1 | Qian X, Jia S K, Luo Y Q, et al. Selective hydrogenation and separation of C3 stream by thermally coupled reactive distillation[J]. Chemical Engineering Research and Design, 2015, 99: 176-184. |
2 | Hotz A F, Skelton R E. A covariance control theory[J]. Control and Dynamic Systems, 1987, 26: 225-276. |
3 | Skelton R E, Ikeda M. Covariance controllers for linear continuous-time systems[J]. International Journal of Control, 2008, 49(5): 1773-1785. |
4 | Al-Jiboory A K, Zhu G M. Robust input covariance constraint control for uncertain polytopic systems[J]. Asian Journal of Control, 2016, 18(4): 1489-1500. |
5 | Bakolas E. Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints[J]. Automatica, 2018, 91: 61-68. |
6 | Okamoto K, Goldshtein M, Tsiotras P. Optimal covariance control for stochastic systems under chance constraints[J]. IEEE Control Systems Letters, 2018, 2(2): 266-271. |
7 | Chmielewski D J, Manthanwar A M. On the tuning of predictive controllers: inverse optimality and the minimum variance covariance constrained control problem[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7807-7814. |
8 | Baroumand S, Zaman A R, Mahmoudi M R. A covariance feedback approach to covariance control of nonlinear stochastic systems[J]. Complexity, 2020, 2020: 9580243. |
9 | Fiacchini M, Alamo T. Covariance control for discrete-time stochastic switched linear systems[J]. IFAC-PapersOnLine, 2022, 55(25): 139-144. |
10 | Baromand S, Labibi B. Covariance control for stochastic uncertain multivariable systems via sliding mode control strategy[J]. IET Control Theory & Applications, 2012, 6(3): 349-356. |
11 | Zhang Q C. Parametric co-variance assignment for a class of multivariable stochastic uncertain systems: output feedback stabilization approach[J]. Advances in Science, Technology and Engineering Systems Journal, 2018, 3(5): 45-51. |
12 | Hou J, Liu T, Wahlberg B, et al. Subspace Hammerstein model identification under periodic disturbance[J]. IFAC-PapersOnLine, 2018, 51(15): 335-340. |
13 | Ławryńczuk M, Tatjewski P. Offset-free state-space nonlinear predictive control for Wiener systems[J]. Information Sciences, 2020, 511: 127-151. |
14 | Wang Y J, Tang S H, Gu X B. Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition[J]. Journal of the Franklin Institute, 2022, 359(2): 1782-1802. |
15 | Khani F, Haeri M. Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models[J]. Chemical Engineering Science, 2015, 129: 223-231. |
16 | H D, Chanfreut P, Maestre J M. A nonlinear distributed model predictive scheme for systems based on Hammerstein model[J]. IFAC-PapersOnLine, 2020, 53(2): 3361-3366. |
17 | Quachio R, Garcia C. MPC relevant identification method for Hammerstein and Wiener models[J]. Journal of Process Control, 2019, 80: 78-88. |
18 | Zhang Q, Wang Q J, Li G L. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 383-394. |
19 | Wang H K, Zhao J, Xu Z H, et al. Linear model predictive control for Hammerstein system with unknown nonlinearities[J]. IFAC Proceedings Volumes, 2013, 46(13): 302-306. |
20 | Du J J, Zhang L, Chen J F, et al. Self-adjusted decomposition for multi-model predictive control of Hammerstein systems based on included angle[J]. ISA Transactions, 2020, 103: 19-27. |
21 | Ding B C, Wang J, Su B J. Output feedback model predictive control for Hammerstein model with bounded disturbance[J]. IET Control Theory & Applications, 2022, 16(10): 1032-1041. |
22 | 卫国宾, 王勇, 易水生, 等. 新负载型碳三液相加氢催化剂的开发和工业应用[J]. 化工进展, 2018, 37(12): 4948-4952. |
Wei G B, Wang Y, Yi S S, et al. Development and industry application of new supported catalyst for C3 fraction liquid phase hydrogenation[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4948-4952. | |
23 | Wu W, Shao B, Zhou X G. Dynamic control of a selective hydrogenation process with undesired MAPD impurities in the C3-cut streams[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54: 28-36. |
24 | Mary G, Esmaeili A, Chaouki J. Simulation of the selective hydrogenation of C3-cut in the liquid phase[J]. International Journal of Chemical Reactor Engineering, 2016, 14(4): 859-874. |
25 | 季江宁, 刘昆元, 赵秀红, 等. 碳三液相催化加氢动力学研究[J]. 石油化工设计, 2002, 19(1): 59-62. |
Ji J N, Liu K Y, Zhao X H, et al. Kinetics study on liquid phase catalytic hydrogenation of C3 [J]. Petrochemical Design, 2002, 19(1): 59-62. | |
26 | 李文江, 林思建, 王璇. 一种辨识Hammerstein模型的新方法[J]. 计量学报, 2015, 36(4): 418-422. |
Li W J, Lin S J, Wang X. New method for identification of Hammerstein model[J]. Acta Metrologica Sinica, 2015, 36(4): 418-422. | |
27 | Nakamura M, Goto S, Sugi T. A methodology for designing controllers for industrial systems based on nonlinear separation model and control[J]. Control Engineering Practice, 1999, 7(3): 347-356. |
28 | Zhao W X. Parametric identification of Hammerstein systems with consistency results using stochastic inputs[J]. IEEE Transactions on Automatic Control, 2010, 55(2): 474-480. |
29 | Suman M, Maity R. Hybrid Wavelet-ARX approach for modeling association between rainfall and meteorological forcings at river basin scale[J]. Journal of Hydrology, 2019, 577: 123918. |
30 | 张德慧, 张德育, 刘清云, 等. 基于粒子群算法的BP神经网络优化技术[J]. 计算机工程与设计, 2015, 36(5): 1321-1326. |
Zhang D H, Zhang D Y, Liu Q Y, et al. BP neural network optimized by improved PSO[J]. Computer Engineering and Design, 2015, 36(5): 1321-1326. | |
31 | Zhang Z B, Jiang Y Z, Zhang S H, et al. An adaptive particle swarm optimization algorithm for reservoir operation optimization[J]. Applied Soft Computing, 2014, 18: 167-177. |
32 | Wang D Q, Zhang W. Improved least squares identification algorithm for multivariable Hammerstein systems[J]. Journal of the Franklin Institute, 2015, 352(11): 5292-5307. |
33 | Nakamura M, Goto S, Sugi T. A methodology for designing controllers for industrial systems based on nonlinear separation model and control[J]. Control Engineering Practice, 1999, 7(3): 347-356. |
34 | 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 6-14. |
Yu L. Robust Control: a Method to Deal with Linear Matrix Inequalities[M]. Beijing: Tsinghua University Press, 2002: 6-14. | |
35 | Jafari M R, Arefi M M, Panahi M. Convex reformulations for self-optimizing control optimization problem: linear matrix inequality approach[J]. Journal of Process Control, 2022, 116: 172-184. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[8] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[9] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[10] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[11] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[12] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[13] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[14] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||