CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2589-2598.DOI: 10.11949/0438-1157.20230175
• Biochemical engineering and technology • Previous Articles Next Articles
Lei MAO(), Guanzhang LIU, Hang YUAN, Guangya ZHANG()
Received:
2023-03-01
Revised:
2023-04-14
Online:
2023-07-27
Published:
2023-06-05
Contact:
Guangya ZHANG
通讯作者:
张光亚
作者简介:
毛磊(1998—),男,硕士研究生,ml13547940286@163.com
基金资助:
CLC Number:
Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics[J]. CIESC Journal, 2023, 74(6): 2589-2598.
毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598.
Add to citation manager EndNote|Ris|BibTeX
Category | pH=7.0 | pH=8.0 | pH=9.0 | pH=11.0 |
---|---|---|---|---|
SazCA-Ferritin monomer | -1.46 | -8.51 | -12.55 | -34.69 |
SazCA monomer | 15.08 | 9.07 | 5.03 | -12.72 |
Ferritin monomer | -2.69 | -6.19 | -8.1 | -17.64 |
Table 1 Net surface charges of three different monomers at different pH
Category | pH=7.0 | pH=8.0 | pH=9.0 | pH=11.0 |
---|---|---|---|---|
SazCA-Ferritin monomer | -1.46 | -8.51 | -12.55 | -34.69 |
SazCA monomer | 15.08 | 9.07 | 5.03 | -12.72 |
Ferritin monomer | -2.69 | -6.19 | -8.1 | -17.64 |
1 | Zhang Y M, Zhu J Y, Hou J W, et al. Carbonic anhydrase membranes for carbon capture and storage[J]. Journal of Membrane Science Letters, 2022, 2(2): 100031. |
2 | Talekar S, Jo B H, Dordick J S, et al. Carbonic anhydrase for CO2 capture, conversion and utilization[J]. Current Opinion in Biotechnology, 2022, 74: 230-240. |
3 | Effendi S S W, Ng I. The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: a critical review[J]. Process Biochemistry, 2019, 87: 55-65. |
4 | Patel H A, Byun J, Yavuz C T. Carbon dioxide capture adsorbents: chemistry and methods[J]. ChemSusChem, 2017, 10(7): 1303-1317. |
5 | Al-Mamoori A, Krishnamurthy A, Rownaghi A A, et al. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849. |
6 | Farrelly D J, Everard C D, Fagan C C, et al. Carbon sequestration and the role of biological carbon mitigation: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 712-727. |
7 | Pu X, Han Y J. Promotion of carbon dioxide biofixation through metabolic and enzyme engineering[J]. Catalysts, 2022, 12(4): 399. |
8 | Yoshimoto M, Schweizer T, Rathlef M, et al. Immobilization of carbonic anhydrase in glass micropipettes and glass fiber filters for flow-through reactor applications[J]. ACS Omega, 2018, 3(8): 10391-10405. |
9 | Kanth B K, Lee J, Pack S P. Carbonic anhydrase: its biocatalytic mechanisms and functional properties for efficient CO2 capture process development[J]. Engineering in Life Sciences, 2013, 13(5): 422-431. |
10 | Yong J K J, Stevens G W, Caruso F, et al. The use of carbonic anhydrase to accelerate carbon dioxide capture processes[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(1): 3-10. |
11 | Zaidi S, Srivastava N, Khare S K. Microbial carbonic anhydrase mediated carbon capture, sequestration & utilization: a sustainable approach to delivering bio-renewables[J]. Bioresource Technology, 2022, 365: 128174. |
12 | Yadav R R, Krishnamurthi K, Mudliar S N, et al. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects[J]. Journal of Basic Microbiology, 2014, 54(6): 472-481. |
13 | Di Fiore A, Alterio V, Monti S M, et al. Thermostable carbonic anhydrases in biotechnological applications[J]. International Journal of Molecular Sciences, 2015, 16(7): 15456-15480. |
14 | 张雷, 雷林超, 张光亚, 等. 基于foldon介导的寡聚化以提高阿魏酸酯酶催化效率[J]. 生物工程学报, 2019, 35(5): 816-826. |
Zhang L, Lei L C, Zhang G Y, et al. Oligomerization triggered by foldon to enhance the catalytic efficiency of feruloyl esterase[J]. Chinese Journal of Biotechnology, 2019, 35(5): 816-826. | |
15 | Wang X Z, Ge H H, Zhang D D, et al. Oligomerization triggered by foldon: a simple method to enhance the catalytic efficiency of lichenase and xylanase[J]. BMC Biotechnology, 2017,17(1): 57. |
16 | Yang X F, Huang A, Peng J Z, et al. Self-assembly amphipathic peptides induce active enzyme aggregation that dramatically increases the operational stability of nitrilase[J]. RSC Advances, 2014, 4(105): 60675-60684. |
17 | Wen H, Zhang L, Du Y J, et al. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101171. |
18 | Xv J, Zhang Z Y, Pang S Z, et al. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFs[J]. Biochemical Engineering Journal, 2022, 189: 108719. |
19 | Ölçücü G, Klaus O, Jaeger K E, et al. Emerging solutions for in vivo biocatalyst immobilization: tailor-made catalysts for industrial biocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 8919-8945. |
20 | Xu T W, Huang X L, Li Z, et al. Enhanced purification efficiency and thermal tolerance of Thermoanaerobacterium aotearoense β-xylosidase through aggregation triggered by short peptides[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4182-4188. |
21 | Bulos J A, Guo R, Wang Z H, et al. Design of a superpositively charged enzyme: human carbonic anhydrase Ⅱ variant with ferritin encapsulation and immobilization[J]. Biochemistry, 2021, 60(47): 3596-3609. |
22 | Zhang J L, Chen X H, Hong J J, et al. Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses[J]. Science China Life Sciences, 2021, 64(3): 352-362. |
23 | Yao H L, Soldano A, Fontenot L, et al. Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability[J]. Biomolecules, 2022, 12(3): 366. |
24 | Honarmand E K, Hagedoorn P L, Hagen W R. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin[J]. Chemical Reviews, 2015, 115(1): 295-326. |
25 | Chen H, Tan X Y, Han X E, et al. Ferritin nanocage based delivery vehicles: from single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds[J]. Biotechnology Advances, 2022, 61: 108037. |
26 | Li H, Tan X Y, Xia X Y, et al. Improvement of thermal stability of oyster (Crassostrea gigas) ferritin by point mutation[J]. Food Chemistry, 2021, 346: 128879. |
27 | Liu G Z, Yuan H, Li X B, et al. Tailoring the properties of self-assembled carbonic anhydrase supraparticles for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12374-12385. |
28 | Lin Z L, Jing Y Y, Huang Y, et al. A cleavable self-aggregating tag scheme for the expression and purification of disulfide bonded proteins and peptides[J]. Chemical Engineering Science, 2022, 262: 118052. |
29 | Shanbhag B K, Liu B Y, Fu J, et al. Self-assembled enzyme nanoparticles for carbon dioxide capture[J]. Nano Letters, 2016, 16(5): 3379-3384. |
30 | 葛慧华, 葛钟琪, 毛磊,等. 铁蛋白介导的地衣多糖酶胞内自发聚集及其高效制备[J]. 生物工程学报, 2022, 38(4): 1602-1611. |
Ge H H, Ge Z Q, Mao L, et al. In vivo self-aggregation and efficient preparation of recombinant lichenase based on ferritin[J]. Chinese Journal of Biotechnology, 2022, 38(4): 1602-1611. | |
31 | De Luca V, Vullo D, Scozzafava A, et al. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction[J]. Bioorganic & Medicinal Chemistry, 2013, 21(6): 1465-1469. |
32 | Kumari M, Lee J, Lee D W, et al. High-level production in a plant system of a thermostable carbonic anhydrase and its immobilization on microcrystalline cellulose beads for CO2 capture[J]. Plant Cell Reports, 2020, 39(10): 1317-1329. |
33 | Zhu Y Z, Liu Y R, Ai M M, et al. Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralization[J]. Synthetic and Systems Biotechnology, 2022, 7(1): 460-473. |
34 | Hsieh C J, Cheng J C, Hu C J, et al. Entrapment of the fastest known carbonic anhydrase with biomimetic silica and its application for CO2 sequestration[J]. Polymers, 2021, 13(15): 2452. |
35 | Kim S, Joo K I, Jo B H, et al. Stability-controllable self-immobilization of carbonic anhydrase fused with a silica-binding tag onto diatom biosilica for enzymatic CO2 capture and utilization[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27055-27063. |
36 | Shin S, Kim H S, Kim M I, et al. Crowding and confinement effects on enzyme stability in mesoporous silicas[J]. International Journal of Biological Macromolecules, 2020, 144: 118-126. |
37 | Rios N S, Arana-Peña S, Mendez-Sanchez C, et al. Increasing the enzyme loading capacity of porous supports by a layer-by-layer immobilization strategy using PEI as glue[J]. Catalysts, 2019, 9(7): 576. |
38 | Tan S I, Han Y L, Yu Y J, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase[J]. Process Biochemistry, 2018, 73: 38-46. |
39 | Steger F, Reich J, Fuchs W, et al. Comparison of carbonic anhydrases for CO2 sequestration[J]. International Journal of Molecular Sciences, 2022, 23(2): 957. |
40 | Song N N, Zhang J L, Zhai J, et al. Ferritin: a multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery[J]. Accounts of Chemical Research, 2021, 54(17): 3313-3325. |
41 | Alam P, Siddiqi K, Chturvedi S K, et al. Protein aggregation: from background to inhibition strategies[J]. International Journal of Biological Macromolecules, 2017, 103: 208-219. |
42 | Wang W, Nema S, Teagarden D. Protein aggregation—pathways and influencing factors[J]. International Journal of Pharmaceutics, 2010, 390(2): 89-99. |
43 | Minton A P. Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations[J]. Journal of Pharmaceutical Sciences, 2005, 94(8): 1668-1675. |
44 | Munishkina L A, Henriques J, Uversky V N, et al. Role of protein-water interactions and electrostatics in α-synuclein fibril formation[J]. Biochemistry, 2004, 43(11): 3289-3300. |
45 | Jackson G S, Hosszu L L P, Power A, et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations[J]. Science, 1999, 283(5409): 1935-1937. |
46 | Holst J V, Versteeg G F, Brilman D W F, et al. Kinetic study of CO2 with various amino acid salts in aqueous solution[J]. Chemical Engineering Science, 2009, 64(1): 59-68. |
47 | Portugal A F, Sousa J M, Magalhães F D, et al. Solubility of carbon dioxide in aqueous solutions of amino acid salts[J]. Chemical Engineering Science, 2009, 64(9): 1993-2002. |
48 | He L, Xie H G, Zong Y, et al. Enhancing CO2 absorption with amino acid ionic liquid [N1111][Gly] aqueous solution by twin-liquid film flow: experimental and numerical study[J]. Chemical Engineering Science, 2022, 256: 117691. |
49 | 周兰娟. 氨基酸离子液体[N1111][Gly]溶液吸收CO2的研究[D]. 泉州:华侨大学,2012. |
Zhou L J. Study on absorption of carbon dioxide by amino acid ionic liquid [N1111][Gly] solution[D]. Quanzhou: Huaqiao University, 2012. | |
50 | Alvizo O, Nguyen L J, Savile C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas[J]. Proceedings of the National Academy of Sciences, 2014, 111(46): 16436-16441. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[10] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[11] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[12] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[13] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[14] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[15] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||