CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2404-2415.DOI: 10.11949/0438-1157.20230084
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yuanyuan ZHANG1,2(), Jiangyuan QU1, Xinxin SU3, Jing YANG3, Kai ZHANG1(
)
Received:
2023-02-08
Revised:
2023-05-11
Online:
2023-07-27
Published:
2023-06-05
Contact:
Kai ZHANG
张媛媛1,2(), 曲江源1, 苏欣欣3, 杨静3, 张锴1(
)
通讯作者:
张锴
作者简介:
张媛媛(1985—),女,博士研究生,高级实验师,zhangyuanyuan@ncepu.edu.cn
基金资助:
CLC Number:
Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit[J]. CIESC Journal, 2023, 74(6): 2404-2415.
张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415.
No. | Reaction | A | β | Ea/(J/mol) | Order |
---|---|---|---|---|---|
A1 | 4NH3 +4NO+O2 | 3.1×108 | 5.30 | 3.3×105 | 3 |
A2 | 4NH3 +5O2 | 2.4×105 | 7.41 | 4.9×105 | 2 |
U1 | NH3+NO | 4.2×108 | 5.30 | 3.5×105 | 2 |
U2 | NH3+ O2 | 3.5×105 | 7.70 | 5.2×105 | 2 |
U3 | HNCO+M | 2.4×1014 | 0.85 | 2.8×105 | 2 |
U4 | NCO+NO | 1.0×1013 | 0 | -1.6×103 | 2 |
U5 | NCO+OH | 1.0×1013 | 0 | 0 | 2 |
U6 | N2O+OH | 2.0×1012 | 0 | 4.2×104 | 2 |
U7 | N2O+M | 6.9×1023 | -2.50 | 2.7×105 | 2 |
U8 | CO(NH2)2 | 1.3×104 | 0 | 6.5×104 | 1 |
U9 | CO(NH2)2+H2O | 6.1×1010 | 0 | 8.8×104 | 2 |
Table 1 Simplified mechanism and kinetic parameters of chemical reactions for SNCR process[7,9-10]
No. | Reaction | A | β | Ea/(J/mol) | Order |
---|---|---|---|---|---|
A1 | 4NH3 +4NO+O2 | 3.1×108 | 5.30 | 3.3×105 | 3 |
A2 | 4NH3 +5O2 | 2.4×105 | 7.41 | 4.9×105 | 2 |
U1 | NH3+NO | 4.2×108 | 5.30 | 3.5×105 | 2 |
U2 | NH3+ O2 | 3.5×105 | 7.70 | 5.2×105 | 2 |
U3 | HNCO+M | 2.4×1014 | 0.85 | 2.8×105 | 2 |
U4 | NCO+NO | 1.0×1013 | 0 | -1.6×103 | 2 |
U5 | NCO+OH | 1.0×1013 | 0 | 0 | 2 |
U6 | N2O+OH | 2.0×1012 | 0 | 4.2×104 | 2 |
U7 | N2O+M | 6.9×1023 | -2.50 | 2.7×105 | 2 |
U8 | CO(NH2)2 | 1.3×104 | 0 | 6.5×104 | 1 |
U9 | CO(NH2)2+H2O | 6.1×1010 | 0 | 8.8×104 | 2 |
1 | 岳光溪, 周大力, 田文龙, 等. 中国煤炭清洁燃烧技术路线图的初步探讨[J]. 中国工程科学, 2018, 20(3): 74-79. |
Yue G X, Zhou D L, Tian W L, et al. Preliminary discussion on the technology roadmap of clean coal combustion in China[J]. Strategic Study of CAE, 2018, 20(3): 74-79. | |
2 | 国家发展与改革委员会, 环境保护部, 国家能源局. 关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知(发改能源[2014]2093号) [Z]. 国家发展与改革委员会, 2014. |
National Development and Reform Commission, Ministry of Ecology and Environment of the People's Republic of China, National Energy Administration. Notification of action plan of upgrading and renovating in energy saving and emission reduction for coal fired power plant (2014—2020) ([2014] 2093) [Z]. National Development and Reform Commission, 2014. | |
3 | 中华人民共和国生态环境部科技标准司. 燃煤电厂超低排放烟气治理工程技术规范: [S]. 北京: 中国环境科学出版社, 2018. |
Department of Science and Technology Standards, Ministry of Ecology and Environment of the People's Republic of China. Technical specifications for flue gas ultra-low emission engineering of coal-fired power plant: [S]. Beijing: China Environmental Science Press, 2018. | |
4 | Locci C, Vervisch L, Farcy B, et al. Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling[J]. Flow Turbulence and Combustion, 2018, 100: 301-340. |
5 | Świeboda T, Krzyżyńska R, Bryszewska-Mazurek A, et al. Advanced approach to modeling of pulverized coal boilers for SNCR process optimization—review and recommendations[J]. International Journal of Thermofluids, 2020, 7/8: 100051. |
6 | 付世龙, 宋蔷, 仲蕾, 等. 粉体对分解炉内SNCR反应影响的研究[J]. 燃料化学学报, 2013, 41(5): 636-640. |
Fu S L, Song Q, Zhong L, et al. Influence of calcium-based particles on the selective non-catalytic reduction process in a pre-calciner[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 636-640. | |
7 | Rota R, Antos D, Zanoelo É F, et al. Experimental and modeling analysis of the NO x OUT process[J]. Chemical Engineering Science, 2002, 57(1): 27-38. |
8 | Farcy B, Abou-Taouk A, Vervisch L, et al. Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNO x process[J]. Fuel, 2014, 118: 291-299. |
9 | Farcy B, Vervisch L, Domingo P. Large eddy simulation of selective non-catalytic reduction (SNCR): a downsizing procedure for simulating nitric-oxide reduction units[J]. Chemical Engineering Science, 2016, 139: 285-303. |
10 | Brouwer J, Heap M P, Pershing D W, et al. A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO[J]. Symposium (International) on Combustion, 1996, 26(2): 2117-2124. |
11 | Li J J, Yang H R, Wu Y X, et al. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them[J]. Environmental Science & Technology, 2013, 47(12): 6681-6687. |
12 | Yan J, Lu X F, Zhang C F, et al. An experimental study on the characteristics of NO x distributions at the SNCR inlets of a large-scale CFB boiler[J]. Energies, 2021, 14: 1267. |
13 | Ke X W, Zhu S H, Huang Z, et al. Issues in deep peak regulation for circulating fluidized bed combustion: variation of NO x emissions with boiler load[J]. Environmental Pollution, 2023, 318: 120912. |
14 | Svith C S, Lin W G, Dam-Johansen K, et al. An experimental and modelling study of the selective non-catalytic reduction (SNCR) of NO x and NH3 in a cyclone reactor[J]. Chemical Engineering Research and Design, 2022, 183: 331-344. |
15 | Bo L, Maria K, Kim D J, et al. Influence of additives on selective noncatalytic reduction of NO with NH3 in circulating fluidized bed boilers[J]. Industrial & Engineering Chemistry Research, 1991, 30(11): 2396-2404. |
16 | Østberg M, Dam-Johansen K. Empirical modeling of the selective non-catalytic reduction of NO: comparison with large-scale experiments and detailed kinetic modeling[J]. Chemical Engineering Science, 1994, 49(12): 1897-1904. |
17 | Zhao Y J, Feng J X, Chen Y M, et al. Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process[J]. Fuel, 2021, 305: 121510. |
18 | Kang Z Z, Yuan Q X, Zhao L Z, et al. Study of the performance, simplification and characteristics of SNCR de-NO x in large-scale cyclone separator[J]. Applied Thermal Engineering, 2017, 123: 635-645. |
19 | Morteza M S, Hesameddin F, Bai X S. Numerical study of the combustion and application of SNCR for NO x reduction in a lab-scale biomass boiler[J]. Fuel, 2021, 293: 120154. |
20 | Duo W, Dam-Johansen K, Østergaard K. Kinetics of the gas-phase reaction between nitric oxide, ammonia and oxygen[J]. The Canadian Journal of Chemical Engineering, 1992, 70: 1014-1020. |
21 | Liang L, Hui S E, Pan S, et al. Influence of mixing, oxygen and residence time on the SNCR process[J]. Fuel, 2014, 120: 38-45. |
22 | 韩奎华, 路春美, 王永征, 等. 选择性非催化还原脱硝特性试验研究[J]. 中国电机工程学报, 2008, 28(14): 80-85. |
Han K H, Lu C M, Wang Y Z, et al. Experimental study on de-NO x characteristics of selective non-catalytic reduction[J]. Proceedings of the CSEE, 2008, 28(14): 80-85. | |
23 | Baleta J, Mikulčić H, Vujanović M, et al. Numerical simulation of urea based selective non-catalytic reduction deNO x process for industrial applications[J]. Energy Conversion and Management, 2016, 125: 59-69. |
24 | 杨栩聪, 廖艳芬, 林涛, 等. 350 t/d垃圾焚烧炉污泥掺混燃烧与SNCR脱硝特性的数值模拟[J]. 中国电机工程学报, 2020, 40(21): 6964-6973. |
Yang X C, Liao Y F, Lin T, et al. Numerical study of 350 t/d MSW incinerator on sludge blending combustion and SNCR denitration characteristics[J]. Proceedings of the CSEE, 2020, 40(21): 6964-6973. | |
25 | 王华山, 陈庆杰, 于秀春, 等. 小型循环流化床锅炉的选择性非催化还原脱硝工艺改造[J]. 科学技术与工程, 2018, 18(16): 318-322. |
Wang H S, Chen Q J, Yu X C, et al. Retrofit of selective non-catalytic reduction denitrification process of small-scale circulating fluid bed boiler[J]. Science Technology and Engineering, 2018, 18(16): 318-322. | |
26 | 李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5): 1789-1796. |
Li Q, Wu Y X, Yang H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5): 1789-1796. | |
27 | Crowe C T, Sharma M P, Stock D E. The particle-source-in cell (PSI-CELL) model for gas-droplet flow[J]. Journal of Fluids Engineering,1977, 99 (2): 325-332. |
28 | Nelson P A, Galloway T R. Particle-to-fluid heat and mass transfer in dense systems of fine particles[J]. Chemical Engineering Science, 1975, 30(1): 1-6. |
29 | Sazhin S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combustion Science, 2006, 32(2): 162-214. |
30 | 胡瓅元, 时铭显. 蜗壳式旋风分离器全空间三维时均流场的结构[J]. 化工学报, 2003, 54(4): 549-556. |
Hu L Y, Shi M X. Three-dimensional time-averaged flow structure in cyclone separator with volute inlet[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 549-556. | |
31 | Elsayed K, Lacor C. The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES[J]. Computers & Fluids, 2013, 71 (2): 224-239. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[8] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[9] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[10] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[13] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||