CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2296-2307.DOI: 10.11949/0438-1157.20230316
• Reviews and monographs • Previous Articles Next Articles
Zhangning CUI1(), Zixuan HU1, Lei WU1,2(), Jun ZHOU1,2(), Gan YE1, Tiantian LIU1, Qiuli ZHANG1,2, Yonghui SONG2,3
Received:
2023-03-30
Revised:
2023-05-25
Online:
2023-07-27
Published:
2023-06-05
Contact:
Lei WU, Jun ZHOU
崔张宁1(), 胡紫璇1, 吴雷1,2(), 周军1,2(), 叶干1, 刘田田1, 张秋利1,2, 宋永辉2,3
通讯作者:
吴雷,周军
作者简介:
崔张宁(1998—),女,硕士研究生,cui@xauat.edu.cn
基金资助:
CLC Number:
Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials[J]. CIESC Journal, 2023, 74(6): 2296-2307.
崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307.
Add to citation manager EndNote|Ris|BibTeX
标准名称及标准号 | 类型 | 要求/技术指标 | 文献 |
---|---|---|---|
纸浆模塑餐具 (GB/T 36787—2018) | 国家标准 | 注满(23±1)℃的水,静置30 min后,无渗出水印;注满(95±5)℃的水,静置30 min后,无变形,无阴渗、渗漏 | [ |
纸餐盒 (GB/T 27589—2011) | 国家标准 | 注入(95±5)℃的水静置30 min后无变形、开裂、起皮、起皱,无渗漏 | [ |
纸碗 (GB/T 27591—2011) | 国家标准 | (95±5)℃的水加入纸碗内静置30 min后无渗漏的水印 | [ |
固体食品包装用纸板 (GB/T 31123—2014) | 国家标准 | 表面吸水性:正面≤40.0 g/m2;反面≤60.0 g/m2 | [ |
医用包装纸 (GB/T 35594—2017) | 国家标准 | Cobb 60≤20.0 g/m2 | [ |
食品包装纸 (QB/T 1014—2010) | 行业标准 | Cobb 60≤30.0 g/m2 | [ |
一次性纸质饮用吸管标准 (T/ZZB 1494—2019) | 团体标准 | 在模拟接触水性食物、酸性食物、含酒精类食物中浸泡2 h,纸张端口不得出现分层开口、软化现象 | [ |
食品接触用一次性纸吸管标 (T/CNFIA 201—2020) | 团体标准 | 预热至45℃的蒸馏水100 ml,加入至100 ml的比色管中,按照卷绕和非卷绕两个方向分别插入2根纸吸管,于45℃烘箱内静置3 h,无纸张分离起翘、弯折、破裂 | [ |
降解型纸吸管 (T/JMES 001—2020) | 团体标准 | 将吸管放入浸泡液后,常温环境下静置2 h,不散开,允许轻微翘边 | [ |
纸基托盘 (T/ZZB 2524—2021) | 团体标准 | 托盘面板表面吸水性应满足测试时间为60 s,吸水性≤40 g/m2 | [ |
Table 1 Industry requirement for water resistance of cellulose-based materials
标准名称及标准号 | 类型 | 要求/技术指标 | 文献 |
---|---|---|---|
纸浆模塑餐具 (GB/T 36787—2018) | 国家标准 | 注满(23±1)℃的水,静置30 min后,无渗出水印;注满(95±5)℃的水,静置30 min后,无变形,无阴渗、渗漏 | [ |
纸餐盒 (GB/T 27589—2011) | 国家标准 | 注入(95±5)℃的水静置30 min后无变形、开裂、起皮、起皱,无渗漏 | [ |
纸碗 (GB/T 27591—2011) | 国家标准 | (95±5)℃的水加入纸碗内静置30 min后无渗漏的水印 | [ |
固体食品包装用纸板 (GB/T 31123—2014) | 国家标准 | 表面吸水性:正面≤40.0 g/m2;反面≤60.0 g/m2 | [ |
医用包装纸 (GB/T 35594—2017) | 国家标准 | Cobb 60≤20.0 g/m2 | [ |
食品包装纸 (QB/T 1014—2010) | 行业标准 | Cobb 60≤30.0 g/m2 | [ |
一次性纸质饮用吸管标准 (T/ZZB 1494—2019) | 团体标准 | 在模拟接触水性食物、酸性食物、含酒精类食物中浸泡2 h,纸张端口不得出现分层开口、软化现象 | [ |
食品接触用一次性纸吸管标 (T/CNFIA 201—2020) | 团体标准 | 预热至45℃的蒸馏水100 ml,加入至100 ml的比色管中,按照卷绕和非卷绕两个方向分别插入2根纸吸管,于45℃烘箱内静置3 h,无纸张分离起翘、弯折、破裂 | [ |
降解型纸吸管 (T/JMES 001—2020) | 团体标准 | 将吸管放入浸泡液后,常温环境下静置2 h,不散开,允许轻微翘边 | [ |
纸基托盘 (T/ZZB 2524—2021) | 团体标准 | 托盘面板表面吸水性应满足测试时间为60 s,吸水性≤40 g/m2 | [ |
涂层 | 涂布方式 | 最大水接触角(WCA)/(°) | Cobb 值/吸水率 | 文献 |
---|---|---|---|---|
壳聚糖接枝聚二甲基硅氧烷 | 涂布机 | 120.53±0.96 | (9.89±0.32) g/m2(Cobb 60) | [ |
壳聚糖-玉米醇溶蛋白 | 涂布机 | 96.1±5.8 | 4.88 g/m2(Cobb 60) | [ |
生物基聚乳酸 | 棒涂机 | 79.5 | 3.17 g/m2(Cobb 30) | [ |
纳米SiO2改性硬脂酸的聚乳酸-肉桂醛 | 喷涂 | 156.3 | 0(Cobb 60) 0(Cobb 300) (1.2±1.0) g/m2(Cobb 600) (9.6±1.0) g/m2(Cobb 1800) | [ |
硅烷改性的超疏水纳米原纤化纤维素 | 喷涂 | 160±4 | 7.5 g/m2(Cobb 120) | [ |
SiO2-乙基纤维素 | 浸渍/喷涂 | 166 | 36.3%(吸水率,3 h) | [ |
阳离子淀粉/巴西棕榈蜡 | 浸渍/喷涂 | 122 | 57%(吸水率,48 h) | [ |
SiO2-有机改性硅酸盐 | 浸渍 | 158.2 | 24.1%(吸水率,24 h) | [ |
Table 2 Coatings and its water resistance reported in literatures
涂层 | 涂布方式 | 最大水接触角(WCA)/(°) | Cobb 值/吸水率 | 文献 |
---|---|---|---|---|
壳聚糖接枝聚二甲基硅氧烷 | 涂布机 | 120.53±0.96 | (9.89±0.32) g/m2(Cobb 60) | [ |
壳聚糖-玉米醇溶蛋白 | 涂布机 | 96.1±5.8 | 4.88 g/m2(Cobb 60) | [ |
生物基聚乳酸 | 棒涂机 | 79.5 | 3.17 g/m2(Cobb 30) | [ |
纳米SiO2改性硬脂酸的聚乳酸-肉桂醛 | 喷涂 | 156.3 | 0(Cobb 60) 0(Cobb 300) (1.2±1.0) g/m2(Cobb 600) (9.6±1.0) g/m2(Cobb 1800) | [ |
硅烷改性的超疏水纳米原纤化纤维素 | 喷涂 | 160±4 | 7.5 g/m2(Cobb 120) | [ |
SiO2-乙基纤维素 | 浸渍/喷涂 | 166 | 36.3%(吸水率,3 h) | [ |
阳离子淀粉/巴西棕榈蜡 | 浸渍/喷涂 | 122 | 57%(吸水率,48 h) | [ |
SiO2-有机改性硅酸盐 | 浸渍 | 158.2 | 24.1%(吸水率,24 h) | [ |
添加剂 | 结构式 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
烷基烯酮二聚体(AKD) | 低成本、低毒性,应用中用量少,pH应用范围宽 | 易水解,储存期短 | [ | |
烯基琥珀酸酐(ASA) | 成本低,施胶速度快、适用pH范围宽 | 化学反应活性高 | [ | |
松香 | 来源天然、低黏度、高稳定性 | 耐水性维持时间有限 | [ | |
聚丙烯酸酯 (ACM) | 优异的光稳定性和耐候性,良好的耐水、耐碱、耐化学品性能和黏接性能 | 低温变脆、高温黏度变大、失强 | [ |
Table 3 Advantages and disadvantages of waterproof additives reported in literatures
添加剂 | 结构式 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
烷基烯酮二聚体(AKD) | 低成本、低毒性,应用中用量少,pH应用范围宽 | 易水解,储存期短 | [ | |
烯基琥珀酸酐(ASA) | 成本低,施胶速度快、适用pH范围宽 | 化学反应活性高 | [ | |
松香 | 来源天然、低黏度、高稳定性 | 耐水性维持时间有限 | [ | |
聚丙烯酸酯 (ACM) | 优异的光稳定性和耐候性,良好的耐水、耐碱、耐化学品性能和黏接性能 | 低温变脆、高温黏度变大、失强 | [ |
1 | Chen Y, Awasthi A K, Wei F, et al. Single-use plastics: production, usage, disposal, and adverse impacts[J]. Science of the Total Environment, 2021, 752: 141772. |
2 | Chamas A, Moon H, Zheng J J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. |
3 | Bartnikowski M, Dargaville T R, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment[J]. Progress in Polymer Science, 2019, 96: 1-20. |
4 | Wu F, Misra M, Mohanty A K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging[J]. Progress in Polymer Science, 2021, 117: 101395. |
5 | Haider T P, Völker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie (International Ed. in English), 2019, 58(1): 50-62. |
6 | Elsawy M A, Kim K H, Park J W, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352. |
7 | Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: a concise review[J]. Carbohydrate Polymers, 2020, 229: 115463. |
8 | Shi L J, Kang L, Gong J, et al. Cellulose nanofibrils reinforced films without chemical modification, hydrophobic, high elongation, and foldability[J]. Industrial Crops and Products, 2022, 180: 114742. |
9 | Ray U, Pang Z Q, Li T. Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme[J]. Cellulose, 2021, 28(6): 3359-3372. |
10 | Jia D M, Xie J Y, Dirican M, et al. Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics[J]. Composites Part B: Engineering, 2022, 236: 109803. |
11 | Herrera M A, Mathew A P, Oksman K. Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications[J]. Cellulose, 2017, 24(9): 3969-3980. |
12 | Balu B, Breedveld V, Hess D W. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing[J]. Langmuir, 2008, 24(9): 4785-4790. |
13 | Lafraya A, Prieto C, Pardo-Figuerez M, et al. Super-repellent paper coated with electrospun biopolymers and electrosprayed silica of interest in food packaging applications[J]. Nanomaterials, 2021, 11(12): 3354. |
14 | Li T. EML webinar overview: advanced materials toward a sustainable future-mechanics design[J]. Extreme Mechanics Letters, 2021, 42: 101107. |
15 | Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications[J]. Polymers, 2010, 2(4): 728-765. |
16 | Bao Y, Qian H J, Lu Z Y, et al. Revealing the hydrophobicity of natural cellulose by single-molecule experiments[J]. Macromolecules, 2015, 48(11): 3685-3690. |
17 | Lindman B, Medronho B, Alves L, et al. Hydrophobic interactions control the self-assembly of DNA and cellulose[J]. Quarterly Reviews of Biophysics, 2021, 54: e3. |
18 | Qian L, Cai W H, Xu D, et al. Single-molecule studies reveal that water is a special solvent for amylose and natural cellulose[J]. Macromolecules, 2019, 52(13): 5006-5013. |
19 | Huang Y Y, Chen G W, Liang Q M, et al. Multifunctional cellulose nanocrystal structural colored film with good flexibility and water-resistance[J]. International Journal of Biological Macromolecules, 2020, 149: 819-825. |
20 | Wohlert M, Benselfelt T, Wågberg L, et al. Cellulose and the role of hydrogen bonds: not in charge of everything[J]. Cellulose, 2022, 29(1): 1-23. |
21 | Bao Y, Xu D, Qian L, et al. Hydrophilicities of amylose and natural cellulose are regulated by the linkage between sugar rings[J]. Nanoscale, 2017, 9(10): 3382-3385. |
22 | Zhang W, Lu P, Qian L Y, et al. Fabrication of superhydrophobic paper surface via wax mixture coating[J]. Chemical Engineering Journal, 2014, 250: 431-436. |
23 | Wang X Z, Pang Z Q, Chen C J, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers[J]. Advanced Functional Materials, 2020, 30(22): 1910417. |
24 | Wang H Q, Wang J L, Si S R, et al. Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength[J]. Industrial Crops and Products, 2021, 170: 113756. |
25 | Huhtamäki T, Tian X L, Korhonen J T, et al. Surface-wetting characterization using contact-angle measurements[J]. Nature Protocols, 2018, 13(7): 1521-1538. |
26 | Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. |
27 | Wen Q Y, Guo F, Yang F C, et al. Green fabrication of coloured superhydrophobic paper from native cotton cellulose[J]. Journal of Colloid and Interface Science, 2017, 497: 284-289. |
28 | Yi C F, Yuan T Z, Ren H, et al. Fabrication of food-safe, degradable and high-barrier air frying paper by chitosan, zein and LCNF coatings[J]. Cellulose, 2023, 30(4): 2441-2452. |
29 | 浙江省品牌建设联合会. 一次性纸质饮用吸管: T/ZZB 1494—2019 [S]. 2019. |
Zhejiang Brand Building Association. Disposable paper drinking straw: T/ZZB 1494—2019 [S]. 2019. | |
30 | 中国食品工业协会. 食品接触用一次性纸吸管: T/C [S]. 北京: 中国标准出版社, 2020. |
China National Food Industry Association. Disposable paper straw for food contact: T/C [S]. Beijing: Standards Press of China, 2020 | |
31 | 国家市场监督管理总局, 中国国家标准化管理委员会. 纸浆模塑餐具: [S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Pulp molding tableware: [S]. Beijing: Standards Press of China, 2018. | |
32 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纸餐盒: [S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paper container set for food: [S]. Beijing: Standards Press of China, 2012. | |
33 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纸碗: [S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paper bowl: [S]. Beijing: Standards Press of China, 2012. | |
34 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 固体食品包装用纸板: [S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paperboard for solid food packaging: [S]. Beijing: Standards Press of China, 2015. | |
35 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 医用包装纸: [S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Medical packaging paper: [S]. Beijing: Standards Press of China, 2017. | |
36 | 中华人民共和国工业和信息化部. 食品包装纸: [S]. 北京: 中国轻工业出版社, 2010. |
Ministry of Industry and Information of the People's Republic of China. Food packaging paper: [S]. Beijing: China Light Industry Press, 2010. | |
37 | 江苏省轻工协会, 江苏省机械工程学会. 降解型纸吸管: T/JMES 001—2020 [S]. 2020. |
Jiangsu Light Industry Association, Jiangsu Mechanical Engineering Society. Degradable paper straw: T/JMES 001—2020 [S]. 2020. | |
38 | 浙江省品牌建设联合会. 纸基托盘: T/ZZB 2524—2021 [S]. 2021. |
Zhejiang Brand Building Association. Paper pallets: T/ZZB 2524—2021 [S]. 2021. | |
39 | Tian X L, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications[J]. Science, 2016, 352(6282): 142-143. |
40 | Li Z, Rabnawaz M, Sarwar M G, et al. A closed-loop and sustainable approach for the fabrication of plastic-free oil-and water-resistant paper products[J]. Green Chemistry, 2019, 21(20): 5691-5700. |
41 | Kansal D, Hamdani S S, Ping R Q, et al. Food-safe chitosan-zein dual-layer coating for water-and oil-repellent paper substrates[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6887-6897. |
42 | Sundar N, Kumar S A, Pavithra A, et al. Studies on semi-crystalline poly lactic acid (PLA) as a hydrophobic coating material on kraft paper for imparting barrier properties in coated abrasive applications[J]. Progress in Organic Coatings, 2020, 145: 105682. |
43 | Jiang X F, Li Q, Li X T, et al. Preparation and characterization of degradable cellulose-based paper with superhydrophobic, antibacterial, and barrier properties for food packaging[J]. International Journal of Molecular Sciences, 2022, 23(19): 11158. |
44 | Ye M T, Tian Z J, Wang S D, et al. Simple preparation of environmentally friendly and durable superhydrophobic antibacterial paper[J]. Cellulose, 2023, 30(4): 2427-2440. |
45 | Liu J F, Wang C, Ewulonu C M, et al. Fabrication of superhydrophobic and degradable cellulose paper materials for straw application[J]. Cellulose, 2022, 29(1): 527-540. |
46 | Korhonen O, Forsman N, Österberg M, et al. Eco-friendly surface hydrophobization of all-cellulose composites using layer-by-layer deposition[J]. Express Polymer Letters, 2020, 14(10): 896-907. |
47 | Zhang X X, Xiao F C, Feng Q F, et al. Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates[J]. Progress in Organic Coatings, 2020, 138: 105384. |
48 | Wolf M P, Salieb-Beugelaar G B, Hunziker P. PDMS with designer functionalities—properties, modifications strategies, and applications[J]. Progress in Polymer Science, 2018, 83: 97-134. |
49 | Cao C Y, Ge M Z, Huang J Y, et al. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation[J]. Journal of Materials Chemistry A, 2016, 4(31): 12179-12187. |
50 | Saadat-Bakhsh M, Ahadian H R, Nouri N M. Facile, robust and large-scale fabrication method of mechanically durable superhydrophobic PDMS/aerogel coating on fibrous substrates[J]. Cellulose, 2017, 24(8): 3453-3467. |
51 | Jing X, Li X, Jiang Y F, et al. Excellent coating of collagen fiber/chitosan-based materials that is water- and oil-resistant and fluorine-free[J]. Carbohydrate Polymers, 2021, 266: 118173. |
52 | Hamdani S S, Li Z, Rabnawaz M, et al. Chitosan-graft-poly(dimethylsiloxane)/zein coatings for the fabrication of environmentally friendly oil- and water-resistant paper[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5147-5155. |
53 | Wu X N, Zhao B, Wang L, et al. Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption[J]. Separation and Purification Technology, 2018, 190: 108-116. |
54 | Li H, Yang J, Li P, et al. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property[J]. Carbohydrate Polymers, 2017, 160: 9-17. |
55 | Khwaldia K, Arab-Tehrany E, Desobry S. Biopolymer coatings on paper packaging materials[J]. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(1): 82-91. |
56 | Zhang Y W, Bi J R, Wang S Q, et al. Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax[J]. Journal of Colloid and Interface Science, 2019, 533: 742-749. |
57 | Wang J L, Chen W, Dong T T, et al. Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement[J]. Green Chemistry, 2021, 23(24): 10062-10070. |
58 | Jiang B, Chen C J, Liang Z Q, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials, 2020, 30(4): 1906307. |
59 | Zhang C W, Nair S S, Chen H Y, et al. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils[J]. Carbohydrate Polymers, 2020, 230: 115626. |
60 | Wang X Z, Xia Q Q, Jing S S, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small, 2021, 17(18): 2008011. |
61 | Saepoo T, Sarak S, Mayakun J, et al. Thermoplastic starch composite with oil palm mesocarp fiber waste and its application as biodegradable seeding pot[J]. Carbohydrate Polymers, 2023, 299: 120221. |
62 | Soni R, Hsu Y I, Asoh T A, et al. Synergistic effect of hemiacetal crosslinking and crystallinity on wet strength of cellulose nanofiber-reinforced starch films[J]. Food Hydrocolloids, 2021, 120: 106956. |
63 | Xie Y J, Pan Y F, Cai P X. Hydroxyl crosslinking reinforced bagasse cellulose/polyvinyl alcohol composite films as biodegradable packaging[J]. Industrial Crops and Products, 2022, 176: 114381. |
64 | Kriechbaum K, Bergström L. Antioxidant and UV-blocking leather-inspired nanocellulose-based films with high wet strength[J]. Biomacromolecules, 2020, 21(5): 1720-1728. |
65 | Kumar A, Bhardwaj N K, Singh S P. Polyacrylamide stabilized alkenyl succinic anhydride emulsion as sizing agent for various cellulosic pulps and fillers[J]. Carbohydrate Polymers, 2020, 236: 116069. |
66 | Oh Y, Park S Y, Yook S, et al. A waterproof cellulose nanofibril sheet prepared by the deposition of an alkyl ketene dimer on a controlled porous structure[J]. Cellulose, 2022, 29(12): 6645-6657. |
67 | Sun P H, Wang S H, Huang Z, et al. Water-resistant, strong, degradable and recyclable rosin-grafted cellulose composite paper[J]. Green Chemistry, 2022, 24(19): 7519-7530. |
68 | Li H, Zhou J H, Zhao J J. Fabrication of dual-functional cellulose nanocrystals/fluorinated polyacrylate containing coumarin derivatives by RAFT-assisted Pickering emulsion polymerization for self-healing application[J]. Applied Surface Science, 2023, 614: 156180. |
69 | Liu C, Luan P C, Li Q, et al. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative[J]. Matter, 2020, 3(6): 2066-2079. |
70 | Yan Y T, Amer H, Rosenau T, et al. Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer[J]. Cellulose, 2016, 23(2): 1189-1197. |
71 | Yang L M, Lu S, Li J J, et al. Nanocrystalline cellulose-dispersed AKD emulsion for enhancing the mechanical and multiple barrier properties of surface-sized paper[J]. Carbohydrate Polymers, 2016, 136: 1035-1040. |
72 | Sato A, Kabusaki D, Okumura H, et al. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2016, 83: 72-79. |
73 | Ashish K, Bhardwaj N K, Singh S P. Cationic starch and polyacrylamides for alkenyl succinic anhydride (ASA) emulsification for sizing of cellulosic fibers[J]. Cellulose, 2019, 26(18): 9901-9915. |
74 | Niu X, Liu Y T, Song Y, et al. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging[J]. Carbohydrate Polymers, 2018, 183: 102-109. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[4] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[5] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[8] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[13] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
[14] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||