CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2308-2321.DOI: 10.11949/0438-1157.20230366
• Reviews and monographs • Previous Articles Next Articles
Bin CAI(), Xiaolin ZHANG(), Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU
Received:
2023-04-12
Revised:
2023-06-11
Online:
2023-07-27
Published:
2023-06-05
Contact:
Xiaolin ZHANG
蔡斌(), 张效林(), 罗倩, 党江涛, 左栗源, 刘欣梅
通讯作者:
张效林
作者简介:
蔡斌(1999—),男,硕士研究生,1162292480@qq.com
基金资助:
CLC Number:
Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials[J]. CIESC Journal, 2023, 74(6): 2308-2321.
蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 (a) Electrical properties of PEDOT∶PSS/ANFs composite films[56]; (b) Sheet resistance of conductive polymer films as a function of the content of EG and Triton X-100[54]; (c) Transmittance and conductivity of PDA@PC films coated with 2 cycles of AgNWs[18]; (d) Sheet resistance as a function of optical transmittance for the TCFs (SWCNT-H) prepared with different surfactants and spray coating method[42]
Fig.7 (a) The sheet resistance as a function of bending treatment[33]; (b) The sheet resistance of AZO and the Cu/Graphene/AZO multilayer versus strain[68]; (c) The resistance increase of AZO and the Cu/Graphene/AZO multilayer versus bending cycles[68]; (d) Relative resistance variation of PM300 film and PM300F film versus aging time[61]; (e) Sheet resistance changes of pristine AgNW, AgNW-ZnO and ZnO-AgNW with and without MGFs coating after thermal annealing at 85℃ for 120 h[70]; (f) Sheet resistance changes of the samples exposed to ambient condition at room temperature for 120 d[70]
种类 | 表面电阻/(Ω/sq) | 优点 | 缺点 |
---|---|---|---|
金属及其化合物 | |||
氧化铟锡 | 101 | 导电性好、透射率高 | 毒性、资源稀缺、脆性大 |
纳米银 | 10-2~101 | 导电性、透射率、柔韧性好 | 与基体结合弱、成本高 |
纳米铜 | 100~101 | 导电性、柔韧性好,成本较低 | 室外暴露、氧化腐蚀下易被损坏 |
氧化锌 | 102 | 易于掺杂其他元素提高光电性能、成本较低 | 弯曲、折叠容易损坏导电网络 |
碳基材料 | |||
碳纳米管 | 102 | 导电性好、密度低、性能稳定 | 不易分散均匀 |
石墨烯 | 102~103 | 导电性好、密度低、性能稳定 | 存在表面缺陷、不易分散均匀 |
碳纤维 | >103 | 成本低、柔韧性好、性能稳定 | 不易分散均匀、导电性和透射率较低 |
导电聚合物 | 100~101 | 导电性好、密度低、柔韧性好 | 成本较高、较易被氧化 |
MXene纳米片 | 101 | 高导电性、亲水性 | 力学性能较差 |
金属/碳基复合材料 | 100~101 | 导电性好、力学性能好、稳定性好 | 成本较高,容易团聚 |
Table 1 Conductivity, advantages and disadvantages of different conductive materials
种类 | 表面电阻/(Ω/sq) | 优点 | 缺点 |
---|---|---|---|
金属及其化合物 | |||
氧化铟锡 | 101 | 导电性好、透射率高 | 毒性、资源稀缺、脆性大 |
纳米银 | 10-2~101 | 导电性、透射率、柔韧性好 | 与基体结合弱、成本高 |
纳米铜 | 100~101 | 导电性、柔韧性好,成本较低 | 室外暴露、氧化腐蚀下易被损坏 |
氧化锌 | 102 | 易于掺杂其他元素提高光电性能、成本较低 | 弯曲、折叠容易损坏导电网络 |
碳基材料 | |||
碳纳米管 | 102 | 导电性好、密度低、性能稳定 | 不易分散均匀 |
石墨烯 | 102~103 | 导电性好、密度低、性能稳定 | 存在表面缺陷、不易分散均匀 |
碳纤维 | >103 | 成本低、柔韧性好、性能稳定 | 不易分散均匀、导电性和透射率较低 |
导电聚合物 | 100~101 | 导电性好、密度低、柔韧性好 | 成本较高、较易被氧化 |
MXene纳米片 | 101 | 高导电性、亲水性 | 力学性能较差 |
金属/碳基复合材料 | 100~101 | 导电性好、力学性能好、稳定性好 | 成本较高,容易团聚 |
1 | Yu S H, Song L J, Wu C, et al. Enhanced conductivity and stability of Cu-embedded zinc tin oxide flexible transparent conductive thin films[J]. Ceramics International, 2022, 48(11): 15925-15931. |
2 | Cai Y G, Piao X Q, Yao X J, et al. A facile method to prepare silver nanowire transparent conductive film for heaters[J]. Materials Letters, 2019, 249: 66-69. |
3 | Jiao C Y, Deng Z M, Min P, et al. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding[J]. Carbon, 2022, 198: 179-187. |
4 | Wang P C, Jian M L, Wu M J Q, et al. Highly sandwich-structured silver nanowire hybrid transparent conductive films for flexible transparent heater applications[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 106998. |
5 | Yokoyama S, Kimura H, Oikawa H, et al. Surface treatment of Cu nanowires using hydroxy acids to form oxide-free Cu junctions for high-performance transparent conductive films[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123939. |
6 | Liu R Y, Chen Y, Ding S Y, et al. Preparation of highly transparent conductive aluminum-doped zinc oxide thin films using a low-temperature aqueous solution process for thin-film solar cells applications[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110161. |
7 | 孙磊, 晏菲, 周璘, 等. 氧化铟锡薄膜电极的表面修饰[J]. 分析测试学报, 2018, 37(10): 1182-1191. |
Sun L, Yan F, Zhou L, et al. Surface modification of indium tin oxide film electrodes[J]. Journal of Instrumental Analysis, 2018, 37(10): 1182-1191. | |
8 | Ruan C, Sun Q, Xiao D J, et al. Lightwave irradiation-assisted low-temperature solution synthesis of indium-tin-oxide transparent conductive films[J]. Ceramics International, 2022, 48(9): 12317-12323. |
9 | Liu T, Dong H L, Wang H Y, et al. Nano cone ITO thin films prepared by pulsed laser deposition for surface measurement of high-temperature components[J]. Journal of Alloys and Compounds, 2023, 959: 170538. |
10 | Liu W S, Cheng H M, Hu H C, et al. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells[J]. Applied Surface Science, 2015, 354: 31-35. |
11 | Klein E, Huber K, Paul O, et al. Low-temperature plasma annealing of sputtered indium tin oxide for transparent and conductive thin-films on glass and polymer substrates[J]. Thin Solid Films, 2020, 693: 137715. |
12 | Wang K Z, Jiao P W, Cheng Y Y, et al. ITO films with different preferred orientations prepared by DC magnetron sputtering[J]. Optical Materials, 2022, 134: 113040. |
13 | 雷沛, 束小文, 刘培元, 等. 氧化铟锡(ITO)薄膜溅射生长及光电性能调控[J]. 表面技术, 2022, 51(8): 100-106. |
Lei P, Shu X W, Liu P Y, et al. Growth and the tunable optical and electrical of sputtered ITO films[J]. Surface Technology, 2022, 51(8): 100-106. | |
14 | Yu S H, Tang B M, Wu C, et al. Ultraflexible transparent conductive films based on Ag nanowires for use in quick thermal response transparent heater[J]. Optical Materials, 2022, 125: 112083. |
15 | Mou Y, Wang H, Peng Y, et al. Low temperature enhanced flexible conductive film by Ag flake/ion composite ink[J]. Materials & Design, 2020, 186: 108339. |
16 | Yang H, Bai S C, Guo X Z, et al. Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater[J]. Applied Surface Science, 2019, 483: 888-894. |
17 | Li G, Zhao J, Wang Z, et al. Ultrathin, flexible, conductive silver nanowires@polyvinyl alcohol composite film fabricated via the combination of air plasma treatment and thermal sintering for electromagnetic interference shielding[J]. Materials Letters, 2022, 325: 132814. |
18 | Li D Y, Li T, Zhang J L, et al. Highly stable and transparent conductive film realized by semi-embedded polydopamine/silver nanowire network[J]. Materials Today Communications, 2020, 25: 101551. |
19 | Dong H L, Yu S H, Song L J, et al. Fabrication of high-quality flexible transparent conductive thin films with a Nb2O5/AgNWs/Nb2O5 sandwich structure[J]. Ceramics International, 2022, 48(11): 15348-15354. |
20 | Zhu B L, Yi C H, Zhao X, et al. Improvement of transparent conductive properties of Cu films by introducing H2 into deposition atmosphere during RF magnetron sputtering[J]. Superlattices and Microstructures, 2020, 145: 106628. |
21 | Sarwar N, Choi S H, Dastgeer G, et al. Synthesis of citrate-capped copper nanoparticles: a low temperature sintering approach for the fabrication of oxidation stable flexible conductive film[J]. Applied Surface Science, 2021, 542: 148609. |
22 | Yu S H, Liu Z W, Zhao L, et al. Degradable, ultra-flexible, transparent and conductive film made of assembling CuNWs on chitosan[J]. Optical Materials, 2022, 123: 111752. |
23 | Zhang H, Wang S, Tian Y H, et al. Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films[J]. Chemical Engineering Journal, 2020, 390: 124495. |
24 | Song L J, Wu C, Yu S H, et al. Flexible transparent conductive ZnSnO/Cu/ZnSnO multilayer films for flexible transparent heaters[J]. Materials Letters, 2022, 312: 131683. |
25 | Yuan Y H, Liu M J, Chen Y Z, et al. Submicron Cu@glass core-shell powders for the preparation of conductive thick films on ceramic substrates[J]. Advanced Powder Technology, 2022, 33(9): 103718. |
26 | Li Y K, Feng J C, Wang Y, et al. Highly conductive and flexible electrodes based on ultrathin aluminum-doped zinc oxide epitaxial films[J]. Applied Surface Science, 2021, 568: 150925. |
27 | Tiwari A, Sahay P P. Modification in the physical properties of nanocrystalline ZnO thin films by Sn/Ni co-doping for transparent conductive oxide applications[J]. Physica B: Condensed Matter, 2022, 629: 413638. |
28 | Li Z Y, Li J W, Xiong M, et al. Effects of Mo single-doping and Mo-Al co-doping on ZnO transparent conductive films[J]. Applied Surface Science, 2022, 584: 152588. |
29 | Smaali A, Abdelli-Messaci S, Lafane S, et al. Pulsed laser deposited transparent and conductive V-doped ZnO thin films[J]. Thin Solid Films, 2020, 700: 137892. |
30 | Duan L B, Zhao X R, Zhang Y Y, et al. Fabrication of flexible Al-doped ZnO films via sol-gel method[J]. Materials Letters, 2016, 162: 199-202. |
31 | Wang Y F, Song J M, Guo Y J, et al. Optimization of physical properties of transparent conductive F and Ga co-doped ZnO films for optoelectronic applications[J]. Materials Letters, 2020, 269: 127591. |
32 | Liu Y, Zeng Q D, Nie C J, et al. F, Mg and Ga co-doped ZnO transparent conductive thin films by dual-target magnetron sputtering: fabrication, structure, and characteristics[J]. Journal of Alloys and Compounds, 2022, 907: 164480. |
33 | Liu X, Xiao W, Tao T, et al. Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device[J]. Carbohydrate Polymers, 2021, 260: 117820. |
34 | Gu T, Sun D X, Xie X, et al. Highly thermally conductive, electrically insulated and flexible cellulose nanofiber-based composite films achieved via stereo complex crystallites cross-linked graphene nanoplatelets[J]. Composites Science and Technology, 2022, 230: 109757. |
35 | Goak J C, Lee S H, Lee N. Effect of purification on the electrical properties of transparent conductive films fabricated from single-walled carbon nanotubes[J]. Diamond and Related Materials, 2020, 106: 107815. |
36 | Zhang L J, Liu X, Zhong M J, et al. Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications[J]. Applied Materials Today, 2020, 20: 100651. |
37 | Jiang S, Hou P X, Liu C, et al. High-performance single-wall carbon nanotube transparent conductive films[J]. Journal of Materials Science & Technology, 2019, 35(11): 2447-2462. |
38 | Wang Y T, Xin Z Y, Wang B J, et al. Fabrication of highly conductive natural rubber-based composite films via Pickering emulsion interfacial assembly[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129774. |
39 | Wang Y Q, Fugetsu B. Mono-dispersed ultra-long single-walled carbon nanotubes as enabling components in transparent and electrically conductive thin films[J]. Carbon, 2015, 82: 152-160. |
40 | Ding Z Q, Zhu Y P, Branford-White C, et al. Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly(vinyl alcohol) electrospun nanofiber mats[J]. Materials Letters, 2014, 128: 310-313. |
41 | Xie R B, Sugime H, Noda S. Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films[J]. Carbon, 2020, 164: 150-156. |
42 | Paul S, Kang Y S, Yim J H, et al. Effect of surfactant and coating method on the electrical and optical properties of thin conductive films prepared with single-walled carbon nanotubes[J]. Current Applied Physics, 2010, 10(4): e101-e104. |
43 | Aimon A H, Hidayat R, Rahmawati D, et al. Facile deposition of reduced graphene oxide-based transparent conductive film with microwave assisted method[J]. Thin Solid Films, 2019, 692: 137618. |
44 | Zhang L K, Chen Y, Liu Q, et al. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding[J]. Journal of Materials Science & Technology, 2022, 111: 57-65. |
45 | Wang Z, Li P, Song R G, et al. High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors[J]. Science Bulletin, 2020, 65(16): 1363-1370. |
46 | Liu L Y, Cheng Y, Zhang X L, et al. Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure[J]. Surface and Coatings Technology, 2017, 325: 611-616. |
47 | Liu Z W, Xie Y F, Zhao J, et al. Rapid preparation of conductive transparent films via solution printing of graphene precursor[J]. Thin Solid Films, 2018, 657: 24-31. |
48 | Karthick R, Brindha M, Selvaraj M, et al. Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film[J]. Journal of Colloid and Interface Science, 2013, 406: 69-74. |
49 | Wang B T, Thio T H G, Chong H S. Transparent conductive far-infrared radiative film based on cotton pulp (CP) with carbon fiber (CF) in agriculture greenhouse[J]. Journal of Materials Research and Technology, 2022, 19: 1049-1058. |
50 | Xu H G, Qu M C, Schubert D W. Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers[J]. Composites Science and Technology, 2019, 181: 107690. |
51 | 李益华. PVDF/碳纤维催化阴极膜耦合MBR/MFC体系的性能提升及应用[D]. 大连: 大连理工大学, 2017. |
Li Y H. Application and improvement of PVDF/carbon fiber cloth composite catalytic cathode membrane in integrated MBR/MFC system[D]. Dalian: Dalian University of Technology, 2017. | |
52 | Taunk M. Charge transport studies in flexible and rollable polypyrrole-PVDF composite films[J/OL]. Materials Today: Proceedings, 2023, . |
53 | Wang Y T, Peng H K, Li T T, et al. Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106199. |
54 | Luo R B, Li H B, Du B, et al. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends[J]. Organic Electronics, 2020, 76: 105451. |
55 | Dias O A T, Konar S, Leão A L, et al. Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization[J]. Carbohydrate Polymers, 2019, 220: 79-85. |
56 | Liu G D, Zheng L, Sun Y M, et al. Preparation of flexible conductive composite electrode film of PEDOT: PSS/aramid nanofibers via vacuum-assisted filtration and acid post-treatment for efficient solid-state supercapacitor[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22454-22468. |
57 | Lapka T, Vilčáková J, Kopecký D, et al. Flexible, ultrathin and light films from one-dimensional nanostructures of polypyrrole and cellulose nanofibers for high performance electromagnetic interference shielding[J]. Carbohydrate Polymers, 2023, 309: 120662. |
58 | Han J W, Wibowo A F, Park J, et al. Highly stretchable, robust, and conductive lab-synthesized PEDOT: PSS conductive polymer/hydroxyethyl cellulose films for on-skin health-monitoring devices[J]. Organic Electronics, 2022, 105: 106499. |
59 | Wang Y T, Li T T, Shiu B C, et al. MXene-coated multi-response conductive film based on layer-by-layer assembly strategy for electromagnetic interference shielding[J]. Journal of Materials Research and Technology, 2021, 15: 6011-6024. |
60 | Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. |
61 | Zhou B, Li Z Y, Li Y L, et al. Flexible hydrophobic 2D Ti3C2T x -based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and joule heating capacities[J]. Composites Science and Technology, 2021, 201: 108531. |
62 | Wang Y T, Peng H K, Li T T, et al. MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 412: 128681. |
63 | Luo J Q, Zhao S, Zhang H B, et al. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding[J]. Composites Science and Technology, 2019, 182: 107754. |
64 | Jiang M Y, Jiang D G, Wang J H, et al. Stretchable MXene based films towards achieving balanced electrical, mechanical and energy storage properties[J]. Chemical Engineering Journal, 2023, 459: 141527. |
65 | Chen D X, Zhou M Q, Hu J C, et al. Adhesive, reflective, and conductive films comprised of graphene nanosheets decorated with Ag nanoparticles for flexible electronics[J]. Applied Surface Science, 2021, 543: 148802. |
66 | Yin J L, Kim J Y, Lee H U, et al. Highly conductive and flexible thin film electrodes based on silver nanowires wrapped carbon fiber networks for supercapacitor applications[J]. Thin Solid Films, 2018, 660: 564-571. |
67 | Wang S Y, Liu H, Pan Y Q, et al. Demonstration of wide spectrum transparent conductive composite films based on silver nanowires and graphene[J]. Infrared Physics & Technology, 2022, 124: 104172. |
68 | Zhang L Q, Yang R, Chen K, et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters, 2017, 207: 62-65. |
69 | Zhu P W, He Z C, Liu S Q, et al. A highly elastic conductive film prepared by bidirectional AS-LBL method[J]. European Polymer Journal, 2022, 162: 110868. |
70 | Arat R, Jia G B, Dellith J, et al. Solution processed transparent conductive hybrid thin films based on silver nanowires, zinc oxide and graphene[J]. Materials Today Communications, 2021, 26: 102162. |
71 | Gao S L, Zhao X H, Fu Q, et al. Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells[J]. Journal of Materials Science & Technology, 2022, 126: 152-160. |
72 | Song C K, Meng X Y, Chen H, et al. Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding[J]. Composites Communications, 2021, 24: 100632. |
73 | Li M, Wang T, Liu X L, et al. Highly stable phosphotungstic acid/Au dual doped carbon nanotube transparent conductive films for transparent flexible heaters[J]. Carbon, 2023, 207: 219-229. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[9] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[12] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[13] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[14] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[15] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||