CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2468-2476.DOI: 10.11949/0438-1157.20230293
• Separation engineering • Previous Articles Next Articles
Kuikui HAN1(), Xianglong TAN1, Jinzhi LI2, Ting YANG1, Chun ZHANG1(), Yongfen ZHANG2, Hongquan LIU2, Zhongwei YU2, Xuehong GU1()
Received:
2023-03-27
Revised:
2023-06-06
Online:
2023-07-27
Published:
2023-06-05
Contact:
Chun ZHANG, Xuehong GU
韩奎奎1(), 谭湘龙1, 李金芝2, 杨婷1, 张春1(), 张永汾2, 刘洪全2, 于中伟2, 顾学红1()
通讯作者:
张春,顾学红
作者简介:
韩奎奎(1997—),男,硕士研究生,han17826150078@163.com
基金资助:
CLC Number:
Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers[J]. CIESC Journal, 2023, 74(6): 2468-2476.
韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476.
Add to citation manager EndNote|Ris|BibTeX
样品 | 合成时间/h | 膜厚/μm | 膜性能 | |||
---|---|---|---|---|---|---|
PX渗透性/ (10-8 mol·m-2·s-1·Pa-1) | OX渗透性/ (10-10 mol·m-2·s-1·Pa-1) | 渗透侧PX 摩尔分数/% | PX/OX 分离因子 | |||
M1 | 4 | 6 | 3.1 | 5.8 | 98.5 | 53.2 |
M2 | 8 | 10 | 2.9 | 0.9 | 99.7 | 319 |
M3 | 12 | 12 | 2.1 | 0.2 | 99.9 | 878 |
M4 | 16 | 18 | 2.0 | 1.3 | 99.5 | 154 |
Table 1 Thickness and PX/OX separation performance of MFI zeolite membranes synthesized with different time
样品 | 合成时间/h | 膜厚/μm | 膜性能 | |||
---|---|---|---|---|---|---|
PX渗透性/ (10-8 mol·m-2·s-1·Pa-1) | OX渗透性/ (10-10 mol·m-2·s-1·Pa-1) | 渗透侧PX 摩尔分数/% | PX/OX 分离因子 | |||
M1 | 4 | 6 | 3.1 | 5.8 | 98.5 | 53.2 |
M2 | 8 | 10 | 2.9 | 0.9 | 99.7 | 319 |
M3 | 12 | 12 | 2.1 | 0.2 | 99.9 | 878 |
M4 | 16 | 18 | 2.0 | 1.3 | 99.5 | 154 |
载体类型 | 晶体取向 | 测试温度/℃ | PX渗透性/(10-8 mol·m-2·s-1·Pa-1) | PX/OX分离因子 | 文献 |
---|---|---|---|---|---|
α-Al2O3片式 | b | 100 | 20 | 600 | [ |
SiO2片式 | b | 150 | 29 | 8000 | [ |
SiO2片式 | b | 150 | 23 | 3990 | [ |
SiO2片式 | b | 150 | 14 | 515 | [ |
SiO2片式 | b | 150 | 23 | 1100 | [ |
α-Al2O3片式 | 随机 | 300 | 1.02 | 76 | [ |
SiO2片式 | 随机 | 150 | 4.8 | 162 | [ |
α-Al2O3管式(8 cm) | 随机 | 250 | 0.95 | 17.8 | [ |
不锈钢管式(—) | 随机 | 150 | 0.66 | 13.5 | [ |
不锈钢管式(2.5 cm) | 随机 | 152 | 0.26 | 60 | [ |
α-Al2O3管式(15 cm) | 随机 | 200 | 1.1 | >400 | [ |
四通道α-Al2O3中空纤维(7 cm) | 随机 | 150 | 2.1 | 878 | 本工作 |
四通道α-Al2O3中空纤维(27 cm) | 随机 | 150 | 1.9 | 245 | 本工作 |
Table 2 Comparisons of the performance of MFI zeolite membranes for xylene isomer separation
载体类型 | 晶体取向 | 测试温度/℃ | PX渗透性/(10-8 mol·m-2·s-1·Pa-1) | PX/OX分离因子 | 文献 |
---|---|---|---|---|---|
α-Al2O3片式 | b | 100 | 20 | 600 | [ |
SiO2片式 | b | 150 | 29 | 8000 | [ |
SiO2片式 | b | 150 | 23 | 3990 | [ |
SiO2片式 | b | 150 | 14 | 515 | [ |
SiO2片式 | b | 150 | 23 | 1100 | [ |
α-Al2O3片式 | 随机 | 300 | 1.02 | 76 | [ |
SiO2片式 | 随机 | 150 | 4.8 | 162 | [ |
α-Al2O3管式(8 cm) | 随机 | 250 | 0.95 | 17.8 | [ |
不锈钢管式(—) | 随机 | 150 | 0.66 | 13.5 | [ |
不锈钢管式(2.5 cm) | 随机 | 152 | 0.26 | 60 | [ |
α-Al2O3管式(15 cm) | 随机 | 200 | 1.1 | >400 | [ |
四通道α-Al2O3中空纤维(7 cm) | 随机 | 150 | 2.1 | 878 | 本工作 |
四通道α-Al2O3中空纤维(27 cm) | 随机 | 150 | 1.9 | 245 | 本工作 |
1 | 邢卫红, 顾学红. 高性能膜材料与膜技术[M]. 北京: 化学工业出版社, 2017. |
Xing W H, Gu X H. High Performance Membrane Materials and Membrane Technology[M]. Beijing: Chemical Industry Press, 2017. | |
2 | Li Y C, Zhu G F, Wang Y, et al. Preparation, mechanism and applications of oriented MFI zeolite membranes: a review[J]. Microporous and Mesoporous Materials, 2021, 312: 110790. |
3 | Wu Z Q, Zhang C, Peng L, et al. Enhanced stability of MFI zeolite membranes for separation of ethanol/water by eliminating surface Si—OH groups[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3175-3180. |
4 | Coronas J, Noble R D, Falconer J L. Separations of C4 and C6 isomers in ZSM-5 tubular membranes[J]. Industrial & Engineering Chemistry Research, 1998, 37(1): 166-176. |
5 | Sun K, Liu B, Zhong S L, et al. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Separation and Purification Technology, 2019, 219: 90-99. |
6 | Zhang H X, Oh Y J, Tikue E T, et al. Enrichment of spent SF6 gas by zeolite membranes for direct reuse in gas-insulated switchgear units[J]. Separation and Purification Technology, 2022, 303: 122223. |
7 | Hong Z, Zhang C, Gu X H, et al. A simple method for healing nonzeolitic pores of MFI membranes by hydrolysis of silanes[J]. Journal of Membrane Science, 2011, 366(1/2): 427-435. |
8 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
9 | Jeon M Y, Kim D, Kumar P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
10 | Choi J, Jeong H K, Snyder M A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009, 325(5940): 590-593. |
11 | Park S, Lee M, Hong S, et al. Low-temperature ozone treatment for p-xylene perm-selective MFI type zeolite membranes: unprecedented revelation of performance-negating cracks larger than 10 nm in polycrystalline membrane structures[J]. Journal of Membrane Science, 2022, 668: 121212. |
12 | 夏敦焰, 彭莉, 吴政奇, 等. MFI型分子筛膜的两段变温合成及对二甲苯异构体的分离性能[J]. 高等学校化学学报, 2020, 41(12): 2813-2821. |
Xia D Y, Peng L, Wu Z Q, et al. Two-stage varying-temperature synthesis of MFI zeolite membrane and their separation performance for xylene isomers[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2813-2821. | |
13 | Shi Z Z, Zhang Y T, Cai C, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration[J]. Ceramics International, 2015, 41(1): 1333-1339. |
14 | Cai C, Zhang Y T, Zhang C, et al. Microstructure modulation of α-Al2O3 hollow fiber membranes with four-channel geometric configuration[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 949-957. |
15 | 陈园园, 时振洲, 张春, 等. 相转化凝固浴对Al2O3中空纤维多孔载体微观结构的影响[J]. 无机材料学报, 2014, 29(2): 143-148. |
Chen Y Y, Shi Z Z, Zhang C, et al. Effect of coagulation bath in phase inversion on microstructure of hollow fiber porous Al2O3 support[J]. Journal of Inorganic Materials, 2014, 29(2): 143-148. | |
16 | Liu Y M, Wang X R, Zhang Y T, et al. Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1114-1122. |
17 | Liu D Z, Zhang Y T, Jiang J, et al. High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration[J]. RSC Advances, 2015, 5(116): 95866-95871. |
18 | Wang X R, Jiang J, Liu D Z, et al. Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 581-586. |
19 | Ji M M, Gao X C, Wang X R, et al. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules[J]. Journal of Membrane Science, 2018, 563: 460-469. |
20 | Jiang J, Peng L, Wang X R, et al. Effect of Si/Al ratio in the framework on the pervaporation properties of hollow fiber CHA zeolite membranes[J]. Microporous and Mesoporous Materials, 2019, 273: 196-202. |
21 | Chen C, Cheng Y L, Peng L, et al. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation[J]. Microporous and Mesoporous Materials, 2019, 274: 347-355. |
22 | Du P, Zhang Y T, Wang X R, et al. Control of zeolite framework flexibility for ultra-selective carbon dioxide separation[J]. Nature Communications, 2022, 13(1): 1427. |
23 | Du P, Song J Y, Wang X R, et al. Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes[J]. Journal of Membrane Science, 2021, 636: 119546. |
24 | 张春, 韩奎奎, 王学瑞, 等. 制备条件对多孔不锈钢中空纤维载体微结构的影响[J]. 南京工业大学学报(自然科学版), 2021, 43(6): 677-684. |
Zhang C, Han K K, Wang X R, et al. Effects of preparation condition on microstructure of porous stainless steel hollow fiber substrates[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(6): 677-684. | |
25 | Park J H, Kim D. High-temperature vapor permeation of preferentially b-oriented zeolite MFI membranes fabricated from nanocrystal-containing nanosheets[J]. Separation and Purification Technology, 2023, 315: 123709. |
26 | Banihashemi F, Lin J Y S. B-oriented MFI zeolite membranes for xylene isomer separation—effect of xylene activity on separation performance[J]. Journal of Membrane Science, 2022, 652: 120492. |
27 | Pham T C T, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angewandte Chemie International Edition, 2013, 52(33): 8693-8698. |
28 | Banihashemi F, Meng L, Babaluo A A, et al. Xylene vapor permeation in MFI zeolite membranes made by templated and template-free secondary growth of randomly oriented seeds: effects of xylene activity and microstructure[J]. Industrial & Engineering Chemistry Research, 2018, 57(47): 16059-16068. |
29 | Gu X H, Dong J H, Nenoff T M, et al. Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 624-633. |
30 | Tarditi A M, Horowitz G I, Lombardo E A. A durable ZSM-5/SS composite tubular membrane for the selective separation of p-xylene from its isomers[J]. Journal of Membrane Science, 2006, 281(1/2): 692-699. |
31 | Gump C J, Tuan V A, Noble R D, et al. Aromatic permeation through crystalline molecular sieve membranes[J]. Industrial & Engineering Chemistry Research, 2001, 40(2): 565-577. |
32 | Daramola M O, Burger A J, Giroir-Fendler A, et al. Extractor-type catalytic membrane reactor with nanocomposite MFI-alumina membrane tube as separation unit: prospect for ultra-pure para-xylene production from m-xylene isomerization over Pt-HZSM-5 catalyst[J]. Applied Catalysis A: General, 2010, 386(1/2): 109-115. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[7] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[8] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[9] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[14] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[15] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||