CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2458-2467.DOI: 10.11949/0438-1157.20230323
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yong LI1(), Jiaqi GAO1, Chao DU1, Yali ZHAO1(), Boqiong LI1, Qianqian SHEN2, Husheng JIA2, Jinbo XUE2()
Received:
2023-04-04
Revised:
2023-06-10
Online:
2023-07-27
Published:
2023-06-05
Contact:
Yali ZHAO, Jinbo XUE
李勇1(), 高佳琦1, 杜超1, 赵亚丽1(), 李伯琼1, 申倩倩2, 贾虎生2, 薛晋波2()
通讯作者:
赵亚丽,薛晋波
作者简介:
李勇(1987—),男,博士,讲师,lytyut@126.com
基金资助:
CLC Number:
Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation[J]. CIESC Journal, 2023, 74(6): 2458-2467.
李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | PC/ (μmol·g-1·h-1) | PTC/ (μmol·g-1·h-1) | PTC/PC比值 |
---|---|---|---|
C@TiO2 | 428 | 653 | 1.5 |
Ni@TiO2 | 604 | 1025 | 1.7 |
Ni@C@TiO2 | 849 | 1538 | 1.8 |
Table 1 Catalytic activities in different reaction conditions over different samples
催化剂 | PC/ (μmol·g-1·h-1) | PTC/ (μmol·g-1·h-1) | PTC/PC比值 |
---|---|---|---|
C@TiO2 | 428 | 653 | 1.5 |
Ni@TiO2 | 604 | 1025 | 1.7 |
Ni@C@TiO2 | 849 | 1538 | 1.8 |
催化剂 | 助催化剂 | 牺牲剂 | 光源 | 产氢活性/(μmol·g-1·h-1) | 文献 |
---|---|---|---|---|---|
Ni@C@TiO2 | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 1538 | 本工作 |
C@TiO2/TiO2-x | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 3667 | [ |
BFBA‐TiO2 | — | 三乙醇胺 | 300 W氙灯 | 228.2 (λ>420 nm) | [ |
B-TiO2/g-C3N4 | — | 三乙醇胺 | 300 W氙灯 | 808.97 | [ |
C@TiO2-x /CNNS | 3%(质量) Pt | 三乙醇胺 | 300 W氙灯 | 1830.93 | [ |
Cu-TiO2@C | — | 甲醇 | 300 W氙灯 | 269.1 | [ |
Cr2O3/C@TiO2 | — | 甲醇 | 300 W氙灯 | 446 | [ |
VTi@CQDs@rGO | — | 甲醇 | — | 638 | [ |
Li-EDA处理P-25 | — | 甲醇 | 模拟全光谱 | 3460 | [ |
b-C-N-S-TiO2 | — | 甲醇 | 300 W氙灯,AM 1.5G | 149.7 | [ |
Pt负载金红石H-TiO2 | 0.57%(质量) Pt | 甲醇 | 300 W氙灯 | 3320 | [ |
Table 2 Hydrogen evolution of C/TiO2 based photocatalysts
催化剂 | 助催化剂 | 牺牲剂 | 光源 | 产氢活性/(μmol·g-1·h-1) | 文献 |
---|---|---|---|---|---|
Ni@C@TiO2 | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 1538 | 本工作 |
C@TiO2/TiO2-x | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 3667 | [ |
BFBA‐TiO2 | — | 三乙醇胺 | 300 W氙灯 | 228.2 (λ>420 nm) | [ |
B-TiO2/g-C3N4 | — | 三乙醇胺 | 300 W氙灯 | 808.97 | [ |
C@TiO2-x /CNNS | 3%(质量) Pt | 三乙醇胺 | 300 W氙灯 | 1830.93 | [ |
Cu-TiO2@C | — | 甲醇 | 300 W氙灯 | 269.1 | [ |
Cr2O3/C@TiO2 | — | 甲醇 | 300 W氙灯 | 446 | [ |
VTi@CQDs@rGO | — | 甲醇 | — | 638 | [ |
Li-EDA处理P-25 | — | 甲醇 | 模拟全光谱 | 3460 | [ |
b-C-N-S-TiO2 | — | 甲醇 | 300 W氙灯,AM 1.5G | 149.7 | [ |
Pt负载金红石H-TiO2 | 0.57%(质量) Pt | 甲醇 | 300 W氙灯 | 3320 | [ |
样品 | ΔTmax/℃ | 时间常数τs/s | 光热转换效率η/% |
---|---|---|---|
Ni@TiO2 | 19.1 | 266.42 | 58.1 |
C@TiO2 | 15.3 | 332.92 | 36.6 |
Ni@C@TiO2 | 24.5 | 257.70 | 78.0 |
Table 3 Photo-thermal properties of the as-prepared samples
样品 | ΔTmax/℃ | 时间常数τs/s | 光热转换效率η/% |
---|---|---|---|
Ni@TiO2 | 19.1 | 266.42 | 58.1 |
C@TiO2 | 15.3 | 332.92 | 36.6 |
Ni@C@TiO2 | 24.5 | 257.70 | 78.0 |
1 | Yuan Y G, Zhou L N, Robatjazi H, et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893. |
2 | Han H X, Tian L J, Liu D F, et al. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems[J]. Journal of the American Chemical Society, 2022, 144(14): 6434-6441. |
3 | Zhou C Y, Wu J C, Li Y Z, et al. Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H2 on Ni nanoparticles loaded on mesoporous silica[J]. Energy & Environmental Science, 2022, 15(7): 3041-3050. |
4 | 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894. |
Wang P, Wei R K. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide[J]. CIESC Journal, 2022, 73(7): 2885-2894. | |
5 | Li Y G, Bai X H, Yuan D C, et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy[J]. Nature Communications, 2022, 13(1): 776. |
6 | Lu J L, Shi Y X, Chen Z Z, et al. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen[J]. Chemical Engineering Journal, 2023, 453: 139834. |
7 | Mao C L, Li H, Gu H G, et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 2019, 5(10): 2702-2717. |
8 | Li X L, Li N, Gao Y Q, et al. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(3): 679-707. |
9 | Wei Y Z, You F F, Zhao D C, et al. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2 [J]. Angewandte Chemie International Edition, 2022, 61(49): e202212049. |
10 | Wang J Y, Yang M, Wang D. Progress and perspectives of hollow multishelled structures[J]. Chinese Journal of Chemistry, 2022, 40(10): 1190-1203. |
11 | Xu J Q, Ju Z Y, Zhang W, et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(16): 8705-8709. |
12 | He L, Zhang W Y, Zhao K, et al. Core-shell Cu@Cu2O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2022, 10(9): 4758-4769. |
13 | Yu H B, Huang J H, Jiang L B, et al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120618. |
14 | Xia B Q, He B W, Zhang J J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2022, 12(46): 2201449. |
15 | 徐振和, 李泓江, 高雨, 等. In2O3/Ag∶ZnIn2S4 “Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
Xu Z H, Li H J, Gao Y, et al. Preparation of In2O3/Ag∶ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635. | |
16 | Li H M, Shen Q Q, Zhang H, et al. Oxygen vacancy-mediated WO3 phase junction to steering photogenerated charge separation for enhanced water splitting[J]. Journal of Advanced Ceramics, 2022, 11(12): 1873-1888. |
17 | Shen Q Q, Xue J B, Li Y, et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2021, 282: 119552. |
18 | Jing J F, Yang J, Li W L, et al. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution[J]. Advanced Materials, 2022, 34(3): 2106807. |
19 | Li Y, Shen Q Q, Guan R F, et al. A C@TiO2 yolk-shell heterostructure for synchronous photothermal-photocatalytic degradation of organic pollutants[J]. Journal of Materials Chemistry C, 2020, 8(3): 1025-1040. |
20 | Li Y, Xue J B, Shen Q Q, et al. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation[J]. Chemical Engineering Journal, 2021, 423: 130188. |
21 | Li Y, Chang H, Wang Z F, et al. A 3D C@TiO2 multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation[J]. Journal of Colloid and Interface Science, 2022, 609: 535-546. |
22 | Ding D W, Liu K, Fan Q K, et al. Nickel nanoparticles individually encapsulated in densified ceramic shells for thermally stable solar energy absorption[J]. Journal of Materials Chemistry A, 2019, 7(7): 3039-3045. |
23 | Yang F, Chen J X, Ye Z Y, et al. Ni-based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation[J]. Advanced Functional Materials, 2021, 31(7): 2006294. |
24 | Liu H Y, Joo J B, Dahl M, et al. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity[J]. Energy & Environmental Science, 2015, 8(1): 286-296. |
25 | Chen S B, Liao J H, Zhou Z N, et al. Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups[J]. Applied Catalysis B: Environmental, 2021, 291: 120139. |
26 | Gao D D, Liu W J, Xu Y, et al. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity[J]. Applied Catalysis B: Environmental, 2020, 260: 118190. |
27 | Chen B, Wang X P, Dong W B, et al. Enhanced light-driven hydrogen-production activity induced by accelerated interfacial charge transfer in donor-acceptor conjugated polymers/TiO2 hybrid[J]. Chemistry-A European Journal, 2019, 25(13): 3362-3368. |
28 | Pan J Q, Dong Z J, Wang B B, et al. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction[J]. Applied Catalysis B: Environmental, 2019, 242: 92-99. |
29 | Liu C, Wu P C, Wu J N, et al. Effective protect of oxygen vacancies in carbon layer coated black TiO2- x /CNNS hetero-junction photocatalyst[J]. Chemical Engineering Journal, 2019, 359: 58-68. |
30 | Chen S B, Li X, Zhou W Y, et al. Carbon-coated Cu-TiO2 nanocomposite with enhanced photostability and photocatalytic activity[J]. Applied Surface Science, 2019, 466: 254-261. |
31 | Chen Y, Mao G B, Tang Y W, et al. Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2021, 42(1): 225-234. |
32 | Lu Y, Liu X L, He L, et al. Spatial heterojunction in nanostructured TiO2 and its cascade effect for efficient photocatalysis[J]. Nano Letters, 2020, 20(5): 3122-3129. |
33 | Zhang K, Wang L Y, Kim J K, et al. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation[J]. Energy & Environmental Science, 2016, 9(2): 499-503. |
34 | Yan X, Xing Z P, Cao Y, et al. In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts[J]. Applied Catalysis B: Environmental, 2017, 219: 572-579. |
35 | Xu Y F, Zhang C, Zhang L X, et al. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance[J]. Energy & Environmental Science, 2016, 9(7): 2410-2417. |
36 | Ming J T, Liu A, Zhao J W, et al. Hot π‐electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production[J]. Angewandte Chemie International Edition, 2019, 58(50): 18290-18294. |
37 | Chen L W, Hao Y C, Guo Y, et al. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation[J]. Journal of the American Chemical Society, 2021, 143(15): 5727-5736. |
38 | Sun M Q, Fu X Q, Chen K X, et al. Dual-plasmonic gold@copper sulfide core-shell nanoparticles: phase-selective synthesis and multimodal photothermal and photocatalytic behaviors[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46146-46161. |
39 | Kanata-Kito T, Matsunaga M, Takakura H, et al. Photoreflectance characterization of built-in potential in MBE-produced as-grown GaAs surface[C]// Advances in semiconductors and superconductors: physics toward devices applications. San Diego, CA, 1990: 56-65. |
40 | Formal F L, Sivula K, Grätzel M. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments[J]. The Journal of Physical Chemistry C, 2012, 116(51): 26707-26720. |
41 | Chen X J, Wang J, Chai Y Q, et al. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction[J]. Advanced Materials, 2021, 33(7): 2007479. |
42 | Li B S, Liu S Y, Lai C, et al. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation[J]. Applied Catalysis B: Environmental, 2020, 266: 118650. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[14] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||