CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2824-2835.DOI: 10.11949/0438-1157.20230538
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ben ZHANG(), Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN()
Received:
2023-06-02
Revised:
2023-06-26
Online:
2023-08-31
Published:
2023-07-05
Contact:
Rongfu WEN
张贲(), 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福()
通讯作者:
温荣福
作者简介:
张贲(1997—),男,硕士研究生,zben336699@163.com
基金资助:
CLC Number:
Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure[J]. CIESC Journal, 2023, 74(7): 2824-2835.
张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835.
Add to citation manager EndNote|Ris|BibTeX
1 | Wen R F, Liu W, Ma X H, et al. Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer[J]. iScience, 2021, 24(6): 102531. |
2 | Enright R, Miljkovic N, Alvarado J L, et al. Dropwise condensation on micro-and nanostructured surfaces[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3): 223-250. |
3 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
4 | Torresin D, Tiwari M K, Col D D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J]. Langmuir, 2013, 29(2): 840-848. |
5 | Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128. |
6 | 马学虎, 兰忠, 王凯, 等. 舞动的液滴: 界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43. |
Ma X H, Lan Z, Wang K, et al. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1): 9-43. | |
7 | Wen R F, Ma X H, Lee Y C, et al. Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond[J]. Joule, 2018, 2(11): 2307-2347. |
8 | Rose J W. Condensation heat transfer[J]. Heat and Mass Transfer, 1999, 35(6): 479-485. |
9 | Rykaczewski K, Paxson A T, Staymates M, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces[J]. Scientific Reports, 2014, 4: 4158. |
10 | Preston D J, Lu Z M, Song Y, et al. Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces[J]. Scientific Reports, 2018, 8: 540. |
11 | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
12 | Sharma C S, Stamatopoulos C, Suter R, et al. Rationally 3D-textured copper surfaces for Laplace pressure imbalance-induced enhancement in dropwise condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29127-29135. |
13 | Preston D J, Mafra D L, Miljkovic N, et al. Scalable graphene coatings for enhanced condensation heat transfer[J]. Nano Letters, 2015, 15(5): 2902-2909. |
14 | Attinger D, Frankiewicz C, Betz A R, et al. Surface engineering for phase change heat transfer: a review[J]. MRS Energy & Sustainability, 2014, 1(1): 4. |
15 | Cho H J, Preston D J, Zhu Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2017, 2: 16092. |
16 | Wang R S, Jakhar K, Ahmed S, et al. Elucidating the mechanism of condensation-mediated degradation of organofunctional silane self-assembled monolayer coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34923-34934. |
17 | Preston D J, Wang E N. Jumping droplets push the boundaries of condensation heat transfer[J]. Joule, 2018, 2(2): 205-207. |
18 | Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5): 397-406. |
19 | Tang Y, Deng D X, Huang G H, et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management, 2013, 66: 66-76. |
20 | Liu K, Huang Z, Hemmatifar A, et al. Self-cleaning porous surfaces for dry condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26759-26764. |
21 | Cheng Y Q, Wang M M, Sun J, et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection[J]. Nano Letters, 2021, 21(17): 7411-7418. |
22 | Wen R F, Xu S S, Zhao D L, et al. Sustaining enhanced condensation on hierarchical mesh-covered surfaces[J]. National Science Review, 2018, 5(6): 878-887. |
23 | Wang R S, Antao D S. Capillary-enhanced filmwise condensation in porous media[J]. Langmuir, 2018, 34(46): 13855-13863. |
24 | Preston D J, Wilke K L, Lu Z M, et al. Gravitationally driven wicking for enhanced condensation heat transfer[J]. Langmuir, 2018, 34(15): 4658-4664. |
25 | Wang R S, Antao D S. Effect of meniscus curvature on phase-change performance during capillary-enhanced filmwise condensation in porous media[J]. Frontiers in Thermal Engineering, 2023, 3: 1131363. |
26 | Liter S G, Kaviany M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4287-4311. |
27 | Ling W S, Zhou W, Yu W, et al. Capillary pumping performance of porous copper fiber sintered wicks for loop heat pipes[J]. Applied Thermal Engineering, 2018, 129: 1582-1594. |
28 | Yang C, Nakayama A. A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3222-3230. |
29 | 温荣福, 马学虎, 兰忠, 等. 低压蒸汽滴状冷凝中液滴脱落滞后效应[J]. 科学通报, 2015, 60(S2): 2784-2789. |
Wen R F, Ma X H, Lan Z, et al. Retention effect of droplet departure in dropwise condensation at low steam pressure[J]. Chinese Science Bulletin, 2015, 60(S2): 2784-2789. | |
30 | Lan Z, Chen Y S, Hu S B, et al. Droplet regulation and dropwise condensation heat transfer enhancement on hydrophobic-superhydrophobic hybrid surfaces[J]. Heat Transfer Engineering, 2018, 39(17/18): 1540-1551. |
31 | Ma X H, Zhou X D, Lan Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2008, 51(7/8): 1728-1737. |
32 | Nam K, Jeong S. Investigation of oscillating flow friction factor for cryocooler regenerator considering cryogenic temperature effect[J]. Cryogenics, 2005, 45(12): 733-738. |
33 | Zhang X B, Qiu L M, Gan Z H, et al. CFD study of a simple orifice pulse tube cooler[J]. Cryogenics, 2007, 47(5/6): 315-321. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[14] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||