CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 110-119.DOI: 10.11949/0438-1157.20230669
• Reviews and monographs • Previous Articles Next Articles
Zexin ZHANG(), Weizhong ZHENG(), Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO
Received:
2023-07-03
Revised:
2023-08-29
Online:
2024-03-11
Published:
2024-01-25
Contact:
Weizhong ZHENG
张泽欣(), 郑伟中(), 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲
通讯作者:
郑伟中
作者简介:
张泽欣(1999—),男,硕士研究生,y30220003@mail.ecust.edu.cn
CLC Number:
Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media[J]. CIESC Journal, 2024, 75(1): 110-119.
张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 SEM images of the sample of as-obtained (a), cleaned at 50℃ and 20 MPa for 10 min (b), and cleaned at 60℃ and 25 MPa for 20 min in 3% (mass) EH-3/DMSO/ scCO2 microemulsions (c)[37]
表面活性剂 | 助溶剂 | 比例 | 浓度 | 反应条件 | 清洗效率/% | 光刻胶种类 | 文献 |
---|---|---|---|---|---|---|---|
EH-3 | DMSO | — | 3%(质量) EH-3 2%(体积)DMSO | 60℃,25 MPa, 10 min | 100 | 高浓度离子注入的BP-12 | [ |
PFOA | SMS50L、EtOH | SMS50L∶EtOH∶PFOA= 7.1%∶10.4%∶82.5%(质量) | 13.6%(体积) | 40~80℃, 130~250 bar | — | — | [ |
PFOA | MEA、1M2P、EtOH | MEA∶1M2P∶EtOH∶PFOA= 2.5%∶1.7%∶13.1%∶82.7%(质量) | 13.6%(体积) | ||||
PFOA | MEA、1M2P、EtOH | MEA∶1M2P∶EtOH∶PFOA= 4.9%∶1.2%∶9.5%∶84.4%(质量) | 18.2%(体积) | ||||
RM258 | SMS50L、EtOH | SMS50L∶EtOH∶RM= 6.1%∶7.4%∶86.5%(质量) | 17.1%(体积) | ||||
PFHA | SMS50L、EtOH | SMS50L∶EtOH∶PFHA= 7.1%∶10.4%∶82.5%(质量) | 13.6%(体积) | ||||
— | DMSO | — | 10%(质量) | 70℃,27.6 MPa, 180 s,超声 | 100 | 高浓度离子注入后的KrF光刻胶 | [ |
POLE | 水 | CO2∶POLE∶H2O= 20.00%∶0.16%∶79.84%(体积) | — | 50℃,15 MPa, 30 min | 42.1 | 高温烘烤后SU-8 光刻胶(负性) | [ |
— | 乙酸正丁酯 | — | 75%(质量) | 40℃,160 bar, 10 min | 未曝光的负性光刻胶 | [ | |
— | TMAHCO3,甲醇 | TMAHCO3∶甲醇= 0.58%∶23.70%(摩尔) | 20.68%(摩尔) | 70℃,3000 psi, 15 min | 碳氟等离子体刻蚀后的PHOST | [ | |
— | QAS-4 | — | 1.25 mmol/L | 50℃,5000 psi | PBOCST | [ |
Table 1 Wafer cleaning process conditions in scCO2
表面活性剂 | 助溶剂 | 比例 | 浓度 | 反应条件 | 清洗效率/% | 光刻胶种类 | 文献 |
---|---|---|---|---|---|---|---|
EH-3 | DMSO | — | 3%(质量) EH-3 2%(体积)DMSO | 60℃,25 MPa, 10 min | 100 | 高浓度离子注入的BP-12 | [ |
PFOA | SMS50L、EtOH | SMS50L∶EtOH∶PFOA= 7.1%∶10.4%∶82.5%(质量) | 13.6%(体积) | 40~80℃, 130~250 bar | — | — | [ |
PFOA | MEA、1M2P、EtOH | MEA∶1M2P∶EtOH∶PFOA= 2.5%∶1.7%∶13.1%∶82.7%(质量) | 13.6%(体积) | ||||
PFOA | MEA、1M2P、EtOH | MEA∶1M2P∶EtOH∶PFOA= 4.9%∶1.2%∶9.5%∶84.4%(质量) | 18.2%(体积) | ||||
RM258 | SMS50L、EtOH | SMS50L∶EtOH∶RM= 6.1%∶7.4%∶86.5%(质量) | 17.1%(体积) | ||||
PFHA | SMS50L、EtOH | SMS50L∶EtOH∶PFHA= 7.1%∶10.4%∶82.5%(质量) | 13.6%(体积) | ||||
— | DMSO | — | 10%(质量) | 70℃,27.6 MPa, 180 s,超声 | 100 | 高浓度离子注入后的KrF光刻胶 | [ |
POLE | 水 | CO2∶POLE∶H2O= 20.00%∶0.16%∶79.84%(体积) | — | 50℃,15 MPa, 30 min | 42.1 | 高温烘烤后SU-8 光刻胶(负性) | [ |
— | 乙酸正丁酯 | — | 75%(质量) | 40℃,160 bar, 10 min | 未曝光的负性光刻胶 | [ | |
— | TMAHCO3,甲醇 | TMAHCO3∶甲醇= 0.58%∶23.70%(摩尔) | 20.68%(摩尔) | 70℃,3000 psi, 15 min | 碳氟等离子体刻蚀后的PHOST | [ | |
— | QAS-4 | — | 1.25 mmol/L | 50℃,5000 psi | PBOCST | [ |
刻蚀剂 | 温度/℃ | HF浓度/(mmol/L) | 压力 | 时间/min | 刻蚀样品 | 文献 |
---|---|---|---|---|---|---|
70%∶30%(质量) HF/吡啶 | 40~75 | 2~15 | 140 bar | 2~20 | SiO2 | [ |
63%∶27%∶10%(质量) HF/吡啶/异丙醇 | 55 | 0.2~2.0 | 20.7MPa | 3 | BPSG、P-TEOS、SiO2、SiN | [ |
Table 2 Wafer etching process conditions in scCO2
刻蚀剂 | 温度/℃ | HF浓度/(mmol/L) | 压力 | 时间/min | 刻蚀样品 | 文献 |
---|---|---|---|---|---|---|
70%∶30%(质量) HF/吡啶 | 40~75 | 2~15 | 140 bar | 2~20 | SiO2 | [ |
63%∶27%∶10%(质量) HF/吡啶/异丙醇 | 55 | 0.2~2.0 | 20.7MPa | 3 | BPSG、P-TEOS、SiO2、SiN | [ |
1 | 刘建丽. 美国《芯片与科学法案》的可能影响及中国的应对之策[J]. 中国发展观察, 2022(12): 116-120. |
Liu J L. The possible impact of the chip and science act of the United States and China's countermeasures[J]. China Development Observation, 2022(12): 116-120. | |
2 | Chen J L, Wang Y S, Kuo H I, et al. Stripping of photoresist on silicon wafer by CO2 supercritical fluid[J]. Talanta, 2006, 70(2): 414-418. |
3 | 李俊岭, 康冬妮. 超临界CO2清洗在半导体工业中的应用[J]. 国防制造技术, 2013(5): 34-37. |
Li J L, Kang D N. Supercritical CO2 cleaning applications in the semiconductor industry[J]. Defense Manufacturing Technology, 2013(5): 34-37. | |
4 | Weibel G L, Ober C K. An overview of supercritical CO2 applications in microelectronics processing[J]. Microelectronic Engineering, 2003, 65(1/2): 145-152. |
5 | Lee D H, Chung M J, Hwang H K, et al. Etch damage evaluation of low-angle, forward-reflected neutral beam etching[J]. Materials Science and Engineering: C, 2003, 23(1/2): 221-224. |
6 | Kern W. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology[J]. RCA Review, 1970, 31(2):187-206. |
7 | Vig J R. UV/ozone cleaning of surfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(3): 1027-1034. |
8 | 张小岗, Johnston Keith P.. 超临界二氧化碳溶液体系集成处理新一代微电子器件研究进展[J]. 科学通报, 2006, 51(20): 2347-2352. |
Zhang X G, Keith P J. Research progress of integrated treatment of new generation microelectronic devices in supercritical carbon dioxide solution system[J]. Chinese Science Bulletin, 2006, 51(20): 2347-2352. | |
9 | Spierings G A C M. Wet chemical etching of silicate glasses in hydrofluoric acid based solutions[J]. Journal of Materials Science, 1993, 28(23): 6261-6273. |
10 | Ferstl M. Highly selective etching of deep silica components using electron cyclotron resonance plasma[J]. Microelectronic Engineering, 2002, 61/62: 881-886. |
11 | 王晨飞. 半导体工艺中的新型刻蚀技术: ICP[J]. 红外, 2005, 26(1): 17-22. |
Wang C F. A new etching technology in semiconductor technology—ICP[J]. Infrared, 2005, 26(1): 17-22. | |
12 | Jung S T, Song H S, Kim D S, et al. Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits[J]. Thin Solid Films, 1999, 341(1/2): 188-191. |
13 | Yamada H, Kuwahara K, Fujiyama H. SiO2 etching characteristics in DC magnetron plasmas by using an external magnetic field[J]. Thin Solid Films, 1998, 316(1/2): 6-12. |
14 | 彭英利,马承愚. 超临界流体技术应用手册[M]. 北京: 化学工业出版社, 2005. |
Peng Y L, Ma C Y. Supercritical Fluid Technology Application Manual[M]. Beijing: Chemical Industry Press, 2005. | |
15 | Tanaka M, Rastogi A, Toepperwein G N, et al. Fluorinated quaternary ammonium salts as dissolution aids for polar polymers in environmentally benign supercritical carbon dioxide[J]. Chemistry of Materials, 2009, 21(14): 3125-3135. |
16 | 韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005. |
Han B X. Supercritical Fluid Science & Technology[M]. Beijing: China Petrochemical Press, 2005. | |
17 | 李颖. 超临界CO2包离子液体型微乳液的分子模拟[D]. 大连: 大连理工大学, 2017. |
Li Y. Molecular simulation of ionic liquid microemulsion in supercritical CO2 [D]. Dalian: Dalian University of Technology, 2017. | |
18 | 任泓睿. 4FG(EO)2表面活性剂构建液态或超临界二氧化碳微乳液的分子动力学模拟研究[D]. 大连: 大连理工大学, 2021. |
Ren H R. Molecular dynamics simulation of liquid or supercritical carbon dioxide microemulsion constructed by 4FG(EO)2 surfactant[D]. Dalian: Dalian University of Technology, 2021. | |
19 | 喻文. 超临界CO2微乳液相行为、微观结构及应用研究[D]. 大连: 大连理工大学, 2015. |
Yu W. Study on phase behavior, microstructure and application of supercritical CO2 microemulsion[D]. Dalian: Dalian University of Technology, 2015. | |
20 | 朱宏跃. 超临界CO2及其包离子液体微乳液剥离制备石墨烯过程基础研究[D]. 大连: 大连理工大学, 2021. |
Zhu H Y. Fundamental research on the process of exfoliating graphene by supercritical CO2 and supercritical CO2 microemulsion containing ionic liquid [D]. Dalian: Dalian University of Technology, 2021. | |
21 | Liu J C, Han B X, Li G Z, et al. Investigation of nonionic surfactant dynol-604 based reverse microemulsions formed in supercritical carbon dioxide[J]. Langmuir, 2001, 17(26): 8040-8043. |
22 | Liu J C, Han B X, Wang Z W, et al. Solubility of ls-36 and ls-45 surfactants in supercritical CO2 and loading water in the CO2/water/surfactant systems[J]. Langmuir, 2002, 18(8): 3086-3089. |
23 | Liu J C, Han B X, Zhang J L, et al. Formation of water-in-CO2 microemulsions with non-fluorous surfactant ls-54 and solubilization of biomacromolecules[J]. Chemistry-A European Journal, 2002, 8(6): 1356-1360. |
24 | Saga K, Kuniyasu H, Hattori T, et al. Etching of silicon oxide films in supercritical carbon dioxide[J]. Solid State Phenomena, 2005, 103/104: 115-120. |
25 | Lee M Y, Do K M, Ganapathy H S, et al. Surfactant-aided supercritical carbon dioxide drying for photoresists to prevent pattern collapse[J]. The Journal of Supercritical Fluids, 2007, 42(1): 150-156. |
26 | Visintin P M, Michael B K, Baum T H, et al. The removal of ion-implanted photoresist from microelectronic devices using supercritical carbon dioxide [C]// Proceedings of the 2005 Annual Meeting. Cincinnati: AIChE, 2005. |
27 | 王磊, 景玉鹏. 高温高压水辅助的超临界二氧化碳剥离光刻胶的装置及方法: 102346381A[P]. 2012-02-08. |
Wang L, Jing Y P. Apparatus and method for peeling photoresist by high temperature and high pressure water assisted supercritical carbon dioxide: 102346381A[P]. 2012-02-08. | |
28 | Korzenski M B, Kolis J W. Diels-Alder reactions using supercritical water as an aqueous solvent medium[J]. Tetrahedron Letters, 1997, 38(32): 5611-5614. |
29 | Myneni S, Hess D W. Post-plasma-etch residue removal using CO2-based fluids[J]. Journal of the Electrochemical Society, 2003, 150(12): G744. |
30 | Levitin G, Myneni S, Hess D W. Post plasma etch residue removal using CO2-TMAHCO3 mixtures: comparison of single-phase and two-phase mixtures[J]. Journal of the Electrochemical Society, 2004, 151(6): G380. |
31 | Kim D W, Heo H, Lim K T. Study of supercritical carbon dioxide/n-butyl acetate co-solvent system with high selectivity in photoresist removal process[J]. Clean Technology, 2017, 23(4): 357-363. |
32 | Kim S H, Yuvaraj H, Jeong Y T, et al. The effect of ultrasonic agitation on the stripping of photoresist using supercritical CO2 and co-solvent formulation[J]. Microelectronic Engineering, 2009, 86(2): 171-175. |
33 | You S S. Removal of post etch/ash residue on an aluminum patterned wafer using supercritical CO2 mixtures with co-solvents and surfactants: sc-CO2 mixture for the removal of post etch/ash residue[J]. Journal of the Semiconductor & Display Technology, 2017, 16(1): 22-28. |
34 | Yoon S I, Park Y W, Oh C I, et al. Photoresist remover composition: US6908892[P]. 2005-06-21. |
35 | Chang T F M, Ishiyama C, Sato T, et al. Quantitative study on removal of SU-8 photoresist patterns by supercritical CO2 emulsion[J]. Microelectronic Engineering, 2013, 110: 204-206. |
36 | Zhang X G, Pham J Q, Martinez H J, et al. Water-in-carbon dioxide microemulsions for removing post-etch residues from patterned porous low-k dielectrics[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(6): 2590-2598. |
37 | Han T T, Li B, Wang Q P, et al. High-dose ion-implanted photoresist stripping in environmentally benign supercritical CO2 nonfluorous surfactant microemulsions[J]. Microelectronic Engineering, 2012, 96: 1-5. |
38 | 戴剑锋, 孙毅彬, 张超, 等. 采用超临界CO2流体清除硅芯片上的纳米粒子[J]. 纳米技术与精密工程, 2009, 7(1): 20-24. |
Dai J F, Sun Y B, Zhang C, et al. Removal of nanoparticles on silica wafer by supercritical fluid carbon dioxide[J]. Nanotechnology and Precision Engineering, 2009, 7(1): 20-24. | |
39 | 高公如, 韩斌, 张学春, 等. 超声波辅助超临界CO2清洗精密零部件设备设计[J]. 农业装备与车辆工程, 2013, 51(3): 42-44. |
Gao G R, Han B, Zhang X C, et al. Design of precision parts cleaning equipment using supercritical carbon dioxide assisted with ultrasound[J]. Agricultural Equipment & Vehicle Engineering, 2013, 51(3): 42-44. | |
40 | Jones C A, Yang D X, Irene E A, et al. HF etchant solutions in supercritical carbon dioxide for "dry" etch processing of microelectronic devices[J]. Chemistry of Materials, 2003, 15(15): 2867-2869. |
41 | Li Y X, Yang D, Jones Ⅲ C A, et al. Etching SiO2 with HF/pyridine-supercritical carbon dioxide solutions and resultant interfacial electronic properties[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007, 25(4): 1139-1142. |
42 | Malhouitre S, van Hoeymissen J, Case C, et al. Etching of thermal SiO2 in supercritical CO2 [J]. ECS Transactions, 2007, 11(2): 71-78. |
43 | Hwang H S, Bae J H, Jung J M, et al. The sacrificial oxide etching of poly-Si cantilevers having high aspect ratios using supercritical CO2 [J]. Microelectronic Engineering, 2010, 87(9): 1696-1700. |
44 | Bae J H, Alam M Z, Jung J M, et al. Improved etching method for microelectronic devices with supercritical carbon dioxide[J]. Microelectronic Engineering, 2009, 86(2): 128-131. |
45 | Min S K, Han G S, You S S. Continuous process for the etching, rinsing and drying of MEMS using supercritical carbon dioxide[J]. Korean Chemical Engineering Research, 2015, 53(5): 557-564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||