CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4286-4301.DOI: 10.11949/0438-1157.20230687
• Energy and environmental engineering • Previous Articles Next Articles
Liuqing YANG(), Zirui ZHAO, Junshe ZHANG(), Jinjia WEI()
Received:
2023-07-05
Revised:
2023-09-07
Online:
2023-12-22
Published:
2023-10-25
Contact:
Junshe ZHANG, Jinjia WEI
通讯作者:
张军社,魏进家
作者简介:
杨柳青(1991—),男,博士研究生,4120116024@stu.xjtu.edu.cn
基金资助:
CLC Number:
Liuqing YANG, Zirui ZHAO, Junshe ZHANG, Jinjia WEI. Effect of Ba content on chemical looping dry reforming of methane performance of (La0.5Sr0.5)1-x Ba x Fe0.6Co0.4O3[J]. CIESC Journal, 2023, 74(10): 4286-4301.
杨柳青, 赵子瑞, 张军社, 魏进家. 钡含量对(La0.5Sr0.5)1-x Ba x Fe0.6Co0.4O3化学链甲烷干重整性能的影响[J]. 化工学报, 2023, 74(10): 4286-4301.
Add to citation manager EndNote|Ris|BibTeX
样品 | 缩写 |
---|---|
La0.45Sr0.45Ba0.1Fe0.6Co0.4O3 | LSB10FC |
La0.4Sr0.4Ba0.2Fe0.6Co0.4O3 | LSB20FC |
La0.35Sr0.35Ba0.3Fe0.6Co0.4O3 | LSB30FC |
La0.3Sr0.3Ba0.4Fe0.6Co0.4O3 | LSB40FC |
La0.25Sr0.25Ba0.5Fe0.6Co0.4O3 | LSB50FC |
Table 1 Chemical compositions and abbreviations of the samples
样品 | 缩写 |
---|---|
La0.45Sr0.45Ba0.1Fe0.6Co0.4O3 | LSB10FC |
La0.4Sr0.4Ba0.2Fe0.6Co0.4O3 | LSB20FC |
La0.35Sr0.35Ba0.3Fe0.6Co0.4O3 | LSB30FC |
La0.3Sr0.3Ba0.4Fe0.6Co0.4O3 | LSB40FC |
La0.25Sr0.25Ba0.5Fe0.6Co0.4O3 | LSB50FC |
载氧体 | 无限定还原时间的CL-DRM过程 | 限定还原时间的CL-DRM过程 | ||||
---|---|---|---|---|---|---|
转化率/% | 消耗氧量/(mmol·g-1) | 补充氧量/(mmol·g-1) | 转化率/% | 消耗氧量/(mmol·g-1) | 补充氧量/(mmol·g-1) | |
LSB10FC | 67.1 | 8.00 | 4.82 | 83.0 | 4.12 | 3.91 |
LSB20FC | 58.0 | 7.53 | 5.15 | 82.6 | 4.38 | 4.75 |
LSB30FC | 68.9 | 6.68 | 5.54 | 84.3 | 5.29 | 5.24 |
LSB40FC | 44.3 | 7.36 | 5.59 | 73.0 | 4.37 | 4.36 |
LSB50FC | 45.2 | 7.17 | 5.17 | 67.3 | 4.64 | 4.90 |
Table 2 Methane conversion, the amount of O consumed and replenished for different oxygen carriers
载氧体 | 无限定还原时间的CL-DRM过程 | 限定还原时间的CL-DRM过程 | ||||
---|---|---|---|---|---|---|
转化率/% | 消耗氧量/(mmol·g-1) | 补充氧量/(mmol·g-1) | 转化率/% | 消耗氧量/(mmol·g-1) | 补充氧量/(mmol·g-1) | |
LSB10FC | 67.1 | 8.00 | 4.82 | 83.0 | 4.12 | 3.91 |
LSB20FC | 58.0 | 7.53 | 5.15 | 82.6 | 4.38 | 4.75 |
LSB30FC | 68.9 | 6.68 | 5.54 | 84.3 | 5.29 | 5.24 |
LSB40FC | 44.3 | 7.36 | 5.59 | 73.0 | 4.37 | 4.36 |
LSB50FC | 45.2 | 7.17 | 5.17 | 67.3 | 4.64 | 4.90 |
载氧体 | 反应温度/℃ | CH4还原步骤 | 氧变化量/ (mmol·g-1) | CO2分解步骤 | 文献 | ||
---|---|---|---|---|---|---|---|
CH4转化率/% | 合成气选择性/% | 合成气产率/(mmol·g-1) | 转化率/% | ||||
La0.5Ce0.5FeO3 | 850 | 82 | 93 | 4.2 | — | 约92 | [ |
LaFe0.8Al0.2O3 | 900 | 约85 | >95 | 3.4 | — | 约85 | [ |
La0.85Sr0.15Fe0.95Al0.05O3-δ | 900 | 约80 (20%XOC) | >99 | — | — | 约97 | [ |
LSB30FC | 900 | 84.3 | 95.8 | 15.23 | 5.29 | — | 本文 |
Table 3 Comparison of performance for different oxygen carriers
载氧体 | 反应温度/℃ | CH4还原步骤 | 氧变化量/ (mmol·g-1) | CO2分解步骤 | 文献 | ||
---|---|---|---|---|---|---|---|
CH4转化率/% | 合成气选择性/% | 合成气产率/(mmol·g-1) | 转化率/% | ||||
La0.5Ce0.5FeO3 | 850 | 82 | 93 | 4.2 | — | 约92 | [ |
LaFe0.8Al0.2O3 | 900 | 约85 | >95 | 3.4 | — | 约85 | [ |
La0.85Sr0.15Fe0.95Al0.05O3-δ | 900 | 约80 (20%XOC) | >99 | — | — | 约97 | [ |
LSB30FC | 900 | 84.3 | 95.8 | 15.23 | 5.29 | — | 本文 |
1 | Li X Y, Pei C L, Gong J L. Shale gas revolution: catalytic conversion of C1—C3 light alkanes to value-added chemicals[J]. Chem, 2021, 7(7): 1755-1801. |
2 | 王保文, 张港, 刘同庆, 等. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426. |
Wang B W, Zhang G, Liu T Q, et al. Research on chemical looping reforming of CH4 by CeO2 doped CuFe2O4 oxygen carrier coupled with CO2 thermocatalytic reduction[J]. CIESC Journal, 2022, 73(12): 5414-5426. | |
3 | Song S, Song H, Li L M, et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen[J]. Nature Catalysis, 2021, 4(12): 1032-1042. |
4 | Koolen C D, Luo W, Züttel A. From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO2 electroreduction[J]. ACS Catalysis, 2023, 13(2): 948-973. |
5 | 王峰, 张顺鑫, 余方博, 等. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
Wang F, Zhang S X, Yu F B, et al. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction[J]. CIESC Journal, 2023, 74(1): 29-44. | |
6 | 刘彦铄, 王新赫, 张军社, 等. 太阳能甲烷重整反应器研究进展[J]. 化工进展, 2019, 38(12): 5339-5350. |
Liu Y S, Wang X H, Zhang J S, et al. Progress in solar methane reforming reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5339-5350. | |
7 | Huang Y, Sun W J, Qin Z C, et al. The role of China’s terrestrial carbon sequestration 2010—2060 in offsetting energy-related CO2 emissions[J]. National Science Review, 2022, 9(8): nwac057. |
8 | Hu Q Q, Li Y Z, Wu J C, et al. Extraordinary catalytic performance of nickel half-metal clusters for light-driven dry reforming of methane[J]. Advanced Energy Materials, 2023, 13(21): 2300071. |
9 | Buelens L C, Galvita V V, Poelman H, et al. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle[J]. Science, 2016, 354(6311): 449-452. |
10 | Yang L Q, Zhao Z R, Cui C Y, et al. Effect of nickel and cobalt doping on the redox performance of SrFeO3- δ toward chemical looping dry reforming of methane[J]. Energy & Fuels, 2023, 37(16): 12045-12057. |
11 | 蔡润夏, 李凡星. 复杂氧化物载氧体的调变策略及在过程强化中的应用[J]. 化工学报, 2021, 72(12): 6122-6130. |
Cai R X, Li F X. Tailoring the thermodynamic properties of complex oxides for thermochemical air separation and beyond[J]. CIESC Journal, 2021, 72(12): 6122-6130. | |
12 | Zhu Q Y, Zhou H, Wang L, et al. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals[J]. Nature Catalysis, 2022, 5(11): 1030-1037. |
13 | Luo M, Shen R C, Qin Y J, et al. Conversion and syngas production of toluene as a biomass tar model compound in chemical looping reforming[J]. Fuel, 2023, 345: 128203. |
14 | Zhu X, Imtiaz Q, Donat F, et al. Chemical looping beyond combustion—a perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
15 | Li D Y, Xu R D, Gu Z H, et al. Chemical-looping conversion of methane: a review[J]. Energy Technology, 2020, 8(8): 1900925. |
16 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
17 | Sun Z, Russell C K, Whitty K J, et al. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation[J]. Progress in Energy and Combustion Science, 2023, 96: 101045. |
18 | Zeng D W, Kang F W, Qiu Y, et al. Iron oxides with gadolinium-doped cerium oxides as active supports for chemical looping hydrogen production[J]. Chemical Engineering Journal, 2020, 396: 125153. |
19 | Luo C Q, Dou B L, Zhang H, et al. Co-production of hydrogen and syngas from chemical looping water splitting coupled with decomposition of glycerol using Fe-Ce-Ni based oxygen carriers[J]. Energy Conversion and Management, 2021, 238: 114166. |
20 | Zhang R J, Cao Y, Li H B, et al. The role of CuO modified La0.7Sr0.3FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4073-4083. |
21 | 马源, 肖晴月, 岳君容, 等. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
Ma Y, Xiao Q Y, Yue J R, et al. CO x co-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. | |
22 | Hwang J, Rao R R, Giordano L, et al. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756. |
23 | Wang Y H, Robson M J, Manzotti A, et al. High-entropy perovskites materials for next-generation energy applications[J]. Joule, 2023, 7(5): 848-854. |
24 | Zhang J S, Haribal V, Li F X. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme[J]. Science Advances, 2017, 3(8): e1701184. |
25 | Xia X, Chang W X, Cheng S W, et al. Oxygen activity tuning via FeO6 octahedral tilting in perovskite ferrites for chemical looping dry reforming of methane[J]. ACS Catalysis, 2022, 12(12): 7326-7335. |
26 | Chang H, Bjørgum E, Mihai O, et al. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catalysis, 2020, 10(6): 3707-3719. |
27 | Joo S, Kim K, Kwon O, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(29): 15912-15919. |
28 | Zhang D W, De Santiago H A, Xu B Y, et al. Compositionally complex perovskite oxides for solar thermochemical water splitting[J]. Chemistry of Materials, 2023, 35(5): 1901-1915. |
29 | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
30 | Yang L Q, Zhang J S, Wei J J. Highly active La0.35Sr0.35Ba0.3Fe1- x Co x O3 oxygen carriers with the anchored nanoparticles for chemical looping dry reforming of methane[J]. Fuel, 2023, 349: 128771. |
31 | Klaas L, Bulfin B, Kriechbaumer D, et al. Impact of the Sr content on the redox thermodynamics and kinetics of Ca1– x Sr x MnO3– δ for tailored properties[J]. Physical Chemistry Chemical Physics, 2023, 25(13): 9188-9197. |
32 | Sifontes Á B, Del Toro R S, Ávila E, et al. Chitosan templated synthesis of strontium-iron-oxygen nanocrystalline system[J]. Ceramics International, 2015, 41(10): 13250-13256. |
33 | Srilakshmi C, Saraf R, Shivakumara C. Effective degradation of aqueous nitrobenzene using the SrFeO3- δ photocatalyst under UV illumination and its kinetics and mechanistic studies[J]. Industrial & Engineering Chemistry Research, 2015, 54(32): 7800-7810. |
34 | Naveenkumar A, Kuruva P, Shivakumara C, et al. Mixture of fuels approach for the synthesis of SrFeO3– δ nanocatalyst and its impact on the catalytic reduction of nitrobenzene[J]. Inorganic Chemistry, 2014, 53(22): 12178-12185. |
35 | Yang L Q, Li X F, Zhang X Z, et al. Supercritical solvothermal synthesis and formation mechanism of V2O3 microspheres with excellent catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds, 2019, 806: 1394-1402. |
36 | 杨柳青, 何志帅, 张雄志, 等. 纳米Fe3O4的制备及其催化高氯酸铵热分解性能的研究[J]. 现代化工, 2016, 36(11): 94-97. |
Yang L Q, He Z S, Zhang X Z, et al. Preparation of Fe3O4 nanoparticles and its catalytic performance for thermal decomposition of ammonium perchlorate[J]. Modern Chemical Industry, 2016, 36(11): 94-97. | |
37 | Li Y F, Zhang W Q, Zheng Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews, 2017, 46(20): 6345-6378. |
38 | Barbero B P, Cadús L E, Marchetti S G. Determination of Fe(Ⅳ) species in partially substituted perovskite La0.6Ca0.4FeO3 [J]. Hyperfine Interactions, 2009, 194(1): 367-379. |
39 | Feng N J, Wu Y, Meng J, et al. Catalytic combustion of soot over Ce and Co substituted three-dimensionally ordered macroporous La1- x Ce x Fe1- y Co y O3 perovskite catalysts[J]. RSC Advances, 2015, 5(111): 91609-91618. |
40 | Zhang L, Xu W B, Wu J A, et al. Identifying the role of A-site cations in modulating oxygen capacity of iron-based perovskite for enhanced chemical looping methane-to-syngas conversion[J]. ACS Catalysis, 2020, 10(16): 9420-9430. |
41 | Neal L M, Shafiefarhood A, Li F X. Dynamic methane partial oxidation using a Fe2O3@La0.8Sr0.2FeO3- δ core-shell redox catalyst in the absence of gaseous oxygen[J]. ACS Catalysis, 2014, 4(10): 3560-3569. |
42 | Zhang X H, Pei C L, Chang X, et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J]. Journal of the American Chemical Society, 2020, 142(26): 11540-11549. |
43 | Donat F, Müller C R. CO2-free conversion of CH4 to syngas using chemical looping[J]. Applied Catalysis B: Environmental, 2020, 278: 119328. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[6] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[7] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[11] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[14] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[15] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||