CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3697-3707.DOI: 10.11949/0438-1157.20230547
• Ionic Liquids and Green Processes • Previous Articles Next Articles
Shaoqi YANG1(), Shuheng ZHAO1, Lungang CHEN2, Chenguang WANG3, Jianjun HU1(
), Qing ZHOU4, Longlong MA2(
)
Received:
2023-06-07
Revised:
2023-09-01
Online:
2023-11-20
Published:
2023-09-25
Contact:
Jianjun HU, Longlong MA
杨绍旗1(), 赵淑蘅1, 陈伦刚2, 王晨光3, 胡建军1(
), 周清4, 马隆龙2(
)
通讯作者:
胡建军,马隆龙
作者简介:
杨绍旗(1989—),男,博士,讲师,sqyang@henau.edu.cn
基金资助:
CLC Number:
Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system[J]. CIESC Journal, 2023, 74(9): 3697-3707.
杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707.
编号 | 催化剂 | 离子液体(IL) | 转化率/% | 产率/% | ||
---|---|---|---|---|---|---|
1a | 1b | 1c | ||||
1 | Raney镍 | [2-HDEA]OTf | 100 | 93.1 | 0 | 1.6 |
2 | [2-HDEA]OAc | 89.0 | 5.7 | 45.3 | 0 | |
3 | [2-HDEA]Cl | 100 | 14.1 | 55.6 | 0 | |
4 | [2-HDEA]H2PO4 | 98.4 | 9.6 | 41.5 | 0 | |
5 | [2-HDEA]mesy | 88.2 | 5.1 | 10.3 | 0 | |
6 | — | [2-HDEA]OTf | 0 | 0 | 0 | 0 |
7 | Raney钴 | 91.0 | 10.5 | 41.1 | 0 | |
8 | Rh/C | 100 | 96.4 | 0 | 2.5 | |
9① | Rh/C | [BHEM]TfO | 100 | 93.3 | 0 | 2.3 |
10② | Rh/SBA-15 | [Bmim]PF6 | 100 | 76.2 | 0 | 4.8 |
11③ | Rh NPs | [Bmim]PF6 | 100 | 90.0 | 0 | 10.0 |
Table 1 Catalytic activity of different ILs and metal catalysts for HDO of phenol
编号 | 催化剂 | 离子液体(IL) | 转化率/% | 产率/% | ||
---|---|---|---|---|---|---|
1a | 1b | 1c | ||||
1 | Raney镍 | [2-HDEA]OTf | 100 | 93.1 | 0 | 1.6 |
2 | [2-HDEA]OAc | 89.0 | 5.7 | 45.3 | 0 | |
3 | [2-HDEA]Cl | 100 | 14.1 | 55.6 | 0 | |
4 | [2-HDEA]H2PO4 | 98.4 | 9.6 | 41.5 | 0 | |
5 | [2-HDEA]mesy | 88.2 | 5.1 | 10.3 | 0 | |
6 | — | [2-HDEA]OTf | 0 | 0 | 0 | 0 |
7 | Raney钴 | 91.0 | 10.5 | 41.1 | 0 | |
8 | Rh/C | 100 | 96.4 | 0 | 2.5 | |
9① | Rh/C | [BHEM]TfO | 100 | 93.3 | 0 | 2.3 |
10② | Rh/SBA-15 | [Bmim]PF6 | 100 | 76.2 | 0 | 4.8 |
11③ | Rh NPs | [Bmim]PF6 | 100 | 90.0 | 0 | 10.0 |
编号 | 平台分子 | 温度/℃ | 转化率/% | 主产物产率/% |
---|---|---|---|---|
1 | ![]() | 130 | >99.0 | ![]() |
2 | ![]() | 130 | >99.0 | ![]() |
3 | ![]() | 150 | >99.0 | ![]() |
4 | ![]() | 130 | >99.0 | ![]() |
5 | ![]() | 150 | >99.0 | ![]() |
6 | ![]() | 130 | >99.0 | ![]() |
7 | ![]() | 130 | >99.0 | ![]() |
8 | ![]() | 150 | >99.0 | ![]() |
9 | ![]() | 150 | >99.0 | ![]() |
10 | ![]() | 150 | >99.0 | ![]() |
11 | ![]() | 150 | >99.0 | ![]() |
12 | ![]() | 150 | >99.0 | ![]() |
Table 2 The lignin-derived compounds conversion results
编号 | 平台分子 | 温度/℃ | 转化率/% | 主产物产率/% |
---|---|---|---|---|
1 | ![]() | 130 | >99.0 | ![]() |
2 | ![]() | 130 | >99.0 | ![]() |
3 | ![]() | 150 | >99.0 | ![]() |
4 | ![]() | 130 | >99.0 | ![]() |
5 | ![]() | 150 | >99.0 | ![]() |
6 | ![]() | 130 | >99.0 | ![]() |
7 | ![]() | 130 | >99.0 | ![]() |
8 | ![]() | 150 | >99.0 | ![]() |
9 | ![]() | 150 | >99.0 | ![]() |
10 | ![]() | 150 | >99.0 | ![]() |
11 | ![]() | 150 | >99.0 | ![]() |
12 | ![]() | 150 | >99.0 | ![]() |
1 | Sethupathy S, Murillo Morales G, Gao L, et al. Lignin valorization: status, challenges and opportunities[J]. Bioresource Technology, 2022, 347: 126696. |
2 | Liao Y H, Koelewijn S F, van den Bossche G, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390. |
3 | Poveda-Giraldo J A, Solarte-Toro J, Alzate C A. The potential use of lignin as a platform product in biorefineries: a review[J]. Renewable & Sustainable Energy Reviews, 2021, 138: 110688. |
4 | Wang C G, Yang S Q, Song X B, et al. Novel solvent systems for biomass fractionation based on hydrogen-bond interaction: a minireview[J]. Advanced Sustainable Systems, 2020, 4(10): 2000085. |
5 | 黄中艺, 史刘宾, 冯亚军, 等. 离子液体预处理对桉木热解半焦结构和反应性的影响[J]. 化工学报, 2021, 72(4): 2267-2275. |
Huang Z Y, Shi L B, Feng Y J, et al. Effect of ionic liquid pretreatment on eucalyptus char structure and its reactivity[J]. CIESC Journal, 2021, 72(4): 2267-2275. | |
6 | 林泽英, 郑歆来, 龙金星, 等. 杂多酸离子液体催化木质素C—O键和苯环氧化裂解[J]. 化工学报, 2020, 71(12): 5541-5550. |
Lin Z Y, Zheng X L, Long J X, et al. Oxidative cleavage of C—O and benzene ring in lignin catalyzed by polyoxometalate ionic liquids[J]. CIESC Journal, 2020, 71(12): 5541-5550. | |
7 | 赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258. |
Zhao J Z, Zhou G H, Liu X M. Study on application and mechanism of ionic liquids in biomass dissolution and separation[J]. CIESC Journal, 2021, 72(1): 247-258. | |
8 | Lei Z G, Dai C N, Chen B H. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326. |
9 | Yang S Q, Lu X M, Yao H Y, et al. Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF6-Ru/SBA-15 catalysis under acid free conditions[J]. Green Chemistry, 2019, 21(3): 597-605. |
10 | 王飞, 吴真, 张军, 等. 木质素原料制备烃类化合物的研究进展[J]. 林业工程学报, 2017, 2(3): 1-9. |
Wang F, Wu Z, Zhang J, et al. Advances in production of hydrocarbon compounds from lignin[J]. China Forestry Science and Technology, 2017, 2(3): 1-9. | |
11 | 刘思洁, 陆燕玲, 黄家荣, 等. 离子液体催化生物质选择性转化[J]. 中国科学(化学), 2021, 51(10): 1382-1390. |
Liu S J, Lu Y L, Huang J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica Chimica, 2021, 51(10): 1382-1390. | |
12 | Yan N, Yuan Y, Dykeman R, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids[J]. Angewandte Chemie International Edition, 2010, 49(32): 5549-5553. |
13 | Chen L, Xin J Y, Ni L L, et al. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems[J]. Green Chemistry, 2016, 18(8): 2341-2352. |
14 | Chen L, Fink C, Fei Z F, et al. An efficient Pt nanoparticle-ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions[J]. Green Chemistry, 2017, 19(22): 5435-5441. |
15 | Yang S Q, Cai G M, Lu X M, et al. Selective deoxygenation of lignin-derived phenols and dimeric ethers with protic ionic liquids[J]. Industrial & Engineering Chemistry Research, 2020, 59(11): 4864-4871. |
16 | Kasakov S, Shi H, Camaioni D M, et al. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles[J]. Green Chemistry, 2015, 17(11): 5079-5090. |
17 | Chen B, He C Z, Cao M F, et al. Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions[J]. Green Chemistry, 2022, 24(2): 846-857. |
18 | Ren X H, Sun Z H, Lu J Q, et al. Hydrodeoxygenation of guaiacol to phenol using endogenous hydrogen induced by chemo-splitting of water over a versatile nano-porous Ni catalyst[J]. Green Chemistry, 2023, 25(5): 1955-1969. |
19 | Wang X H, Luo Y, Qian M, et al. Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3- S O 4 2 - /ZrO2 catalysts[J]. Sustainable Energy & Fuels, 2020, 4(3): 1409-1416. |
20 | Moos G, Emondts M, Bordet A, et al. Selective hydrogenation and hydrodeoxygenation of aromatic ketones to cyclohexane derivatives using a Rh@SILP catalyst[J]. Angewandte Chemie International Edition, 2020, 59(29): 11977-11983. |
21 | Goclik L, Walschus H, Bordet A, et al. Selective hydrodeoxygenation of acetophenone derivatives using a Fe25Ru75@SILP catalyst: a practical approach to the synthesis of alkyl phenols and anilines[J]. Green Chemistry, 2022, 24(7): 2937-2945. |
22 | Sun J, Konda N V S N M, Parthasarathi R, et al. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids[J]. Green Chemistry, 2017, 19(13): 3152-3163. |
23 | Jiang S N, Ji N, Diao X Y, et al. Vacancy engineering in transition metal sulfide and oxide catalysts for hydrodeoxygenation of lignin-derived oxygenates[J]. ChemSusChem, 2021, 14(20): 4377-4396. |
24 | Liu X H, Jia W D, Xu G Y, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8594-8601. |
25 | Tang H B, Dai Q Q, Cao Y, et al. Hydrodeoxygenation of phenol and pyrolysis oil using Raney Ni and IL/Zr-SBA-15 catalysts[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105848. |
26 | Yue X K, Zhang L H, Sun L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Applied Catalysis B: Environmental, 2021, 293: 120243. |
27 | Jing Y X, Dong L, Guo Y, et al. Chemicals from lignin: a review of catalytic conversion involving hydrogen[J]. ChemSusChem, 2020, 13(17): 4181-4198. |
28 | Hong D Y, Miller S J, Agrawal P K, et al. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts[J]. Chemical Communications, 2010, 46(7): 1038-1040. |
29 | Chang J, Danuthai T, Dewiyanti S, et al. Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts[J]. ChemCatChem, 2013, 5(10): 3041-3049. |
30 | Liu F J, Xue Z M, Zhao X H, et al. Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation[J]. Chemical Communications, 2018, 54(48): 6140-6143. |
31 | Ramdin M, Balaji S P, Vicent-Luna J M, et al. Solubility of the precombustion gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid [bmim][Tf2N] from Monte Carlo simulations[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23599-23604. |
32 | Zhang J H, Sun J M, Wang Y. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes[J]. Green Chemistry, 2020, 22(4): 1072-1098. |
33 | Shangguan J N, Pfriem N, Chin Y H. Mechanistic details of C—O bond activation in and H-addition to guaiacol at water-Ru cluster interfaces[J]. Journal of Catalysis, 2019, 370: 186-199. |
34 | Ishikawa M, Tamura M, Nakagawa Y, et al. Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru-Mn catalyst[J]. Applied Catalysis B: Environmental, 2016, 182: 193-203. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[8] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[9] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[10] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[11] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[12] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[13] | Lijing HUANG, Jijiao HUANG, Penghui LI, Zhinuo LIU, Kangjie JIANG, Wenjuan WU. Hydroxypropyl sulfomethylation modification of lignin and its effect on cellulase hydrolysis [J]. CIESC Journal, 2022, 73(7): 3232-3239. |
[14] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
[15] | Jiangli WANG, Min XUE, Chengke ZHAO, Fengxia YUE. Influences of lignin fractionation on its utilization [J]. CIESC Journal, 2022, 73(5): 1894-1907. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 605
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||