1 |
Huang Z B, Mu A L. Research and analysis of performance improvement of vanadium redox flow battery in microgrid: a technology review[J]. International Journal of Energy Research, 2021, 45(10): 14170-14193.
|
2 |
Lamsal D, Sreeram V, Mishra Y, et al. Output power smoothing control approaches for wind and photovoltaic generation systems: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109245.
|
3 |
Li M Q, Virguez E, Shan R, et al. High-resolution data shows China's wind and solar energy resources are enough to support a 2050 decarbonized electricity system[J]. Applied Energy, 2022, 306: 117996.
|
4 |
Leung P, Shah A A, Sanz L, et al. Recent developments in organic redox flow batteries: a critical review[J]. Journal of Power Sources, 2017, 360: 243-283.
|
5 |
Arenas L F, Ponce de León C, Walsh F C. Redox flow batteries for energy storage: their promise, achievements and challenges[J]. Current Opinion in Electrochemistry, 2019, 16: 117-126.
|
6 |
Javed M S, Ma T, Jurasz J, et al. Solar and wind power generation systems with pumped hydro storage: review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192.
|
7 |
Yang Y Q, Bremner S, Menictas C, et al. Battery energy storage system size determination in renewable energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 109-125.
|
8 |
Zhang Z Y, Ding T, Zhou Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111263.
|
9 |
Xie C X, Duan Y Q, Xu W B, et al. A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage[J]. Angewandte Chemie (International Ed. in English), 2017, 56(47): 14953-14957.
|
10 |
Noack J, Wietschel L, Roznyatovskaya N, et al. Techno-economic modeling and analysis of redox flow battery systems[J]. Energies, 2016, 9(8): 627.
|
11 |
Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263-274.
|
12 |
Li W N, Zaffou R, Sholvin C C, et al. Vanadium redox-flow-battery electrolyte preparation with reducing agents[J]. ECS Transactions, 2013, 53(7): 93-99.
|
13 |
Skyllas-Kazacos M, Cao L Y, Kazacos M, et al. Vanadium electrolyte studies for the vanadium redox battery—a review[J]. ChemSusChem, 2016, 9(13): 1521-1543.
|
14 |
Tavakoli M R, Dornian S, Dreisinger D B. The leaching of vanadium pentoxide using sulfuric acid and sulfite as a reducing agent[J]. Hydrometallurgy, 2014, 141: 59-66.
|
15 |
El Hage R, Chauvet F, Biscans B, et al. Kinetic study of the dissolution of vanadyl sulfate and vanadium pentoxide in sulfuric acid aqueous solution[J]. Chemical Engineering Science, 2019, 199: 123-136.
|
16 |
Rahman F, Skyllas-Kazacos M. Vanadium redox battery: positive half-cell electrolyte studies[J]. Journal of Power Sources, 2009, 189(2): 1212-1219.
|
17 |
彭声谦, 许国镇, 杨华栓, 等. 用从石煤中提取的V2O5制备钒电池用VOSO4的研究[J]. 无机盐工业, 1997, 29(1): 3-6.
|
|
Peng S Q, Xu G Z, Yang H S, et al. A study on the preparation of VOSO4 for vanadium battery with V2O5 extracted from stone coal[J]. Inorganic Chemicals Industry, 1997, 29(1): 3-6.
|
18 |
Vijayakumar M, Li L Y, Nie Z M, et al. Structure and stability of hexa-aqua V(Ⅲ) cations in vanadium redox flow battery electrolytes[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(29): 10233-10242.
|
19 |
Choi N H, Kwon S K, Kim H. Analysis of the oxidation of the V(Ⅱ) by dissolved oxygen using UV-visible spectrophotometry in a vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2013, 160(6): A973-A979.
|
20 |
Zhou X J, Wei C, Li M T, et al. Thermodynamics of vanadium-sulfur-water systems at 298 K[J]. Hydrometallurgy, 2011, 106(1/2): 104-112.
|
21 |
Roe S, Menictas C, Skyllas-Kazacos M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte[J]. Journal of the Electrochemical Society, 2015, 163(1): A5023-A5028.
|
22 |
Carvalho W M, Cassayre L, Quaranta D, et al. Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 61: 436-445.
|
23 |
Jing M H, Wei Z F, Su W, et al. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte[J]. Journal of Power Sources, 2016, 324: 215-223.
|
24 |
Pozarnsky G A, McCormick A V. 51V NMR and EPR study of reaction kinetics and mechanisms in V2O5 gelation by ion exchange of sodium metavanadate solutions[J]. Chemistry of Materials, 1994, 6(4): 380-385.
|
25 |
Chen W, Mai L Q, Peng J F, et al. FTIR study of vanadium oxide nanotubes from lamellar structure[J]. Journal of Materials Science, 2004, 39(7): 2625-2627.
|
26 |
Kera Y, Hirota K. Infrared spectroscopic study of oxygen species in vanadium pentoxide with reference to its activity in catalytic oxidation[J]. The Journal of Physical Chemistry, 1969, 73(11): 3973-3981.
|
27 |
Tyutyunnik A P, Krasil'nikov V N, Zubkov V G, et al. Synthesis, structure, and properties of V2O3(XO4)2 (X = S, Se)[J]. Russian Journal of Inorganic Chemistry, 2010, 55(4): 501-507.
|
28 |
Linnell S F, Payne J L, Pickup D M, et al. Correction: lithiation of V2O3(SO4)2 — a flexible insertion host[J]. Journal of Materials Chemistry A, 2020, 8(38): 20191.
|
29 |
Givan A, Larsen L A, Loewenschuss A, et al. Matrix isolation mid- and far-infrared spectra of sulfuric acid and deuterated sulfuric acid vapors[J]. Journal of Molecular Structure, 1999, 509(1/2/3): 35-47.
|
30 |
Kausar N, Howe R, Skyllas-Kazacos M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes[J]. Journal of Applied Electrochemistry, 2001, 31(12): 1327-1332.
|
31 |
Schmidt D S, Winnick J, Boghosian S, et al. Electrochemical and spectroscopic investigations of the K2SO4-V2O5 molten electrolyte[J]. Journal of the Electrochemical Society, 1999, 146(3): 1060-1068.
|