CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 329-337.DOI: 10.11949/0438-1157.20221620
• Energy and environmental engineering • Previous Articles Next Articles
Minghui CHANG(), Lin WANG(), Jiajia YUAN, Yifei CAO
Received:
2022-11-15
Revised:
2022-12-25
Online:
2023-09-27
Published:
2023-06-05
Contact:
Lin WANG
通讯作者:
王林
作者简介:
常明慧(1998—),女,硕士研究生,1980597284@qq.com
基金资助:
CLC Number:
Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump[J]. CIESC Journal, 2023, 74(S1): 329-337.
常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337.
Add to citation manager EndNote|Ris|BibTeX
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
Table 1 State parameters under standard design conditions
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
Table 2 Comparison of initial investment and operating costs of three systems
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
Table 3 Comparison of annual costs of three systems
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
1 | Mahmoud M, Ramadan M, Naher S, et al. The impacts of different heating systems on the environment: a review[J]. Science of the Total Environment, 2021, 766: 142625. |
2 | Hasnain S M. Review on sustainable thermal energy storage technologies(Part Ⅱ): Cool thermal storage[J]. Energy Conversion and Management, 1998, 39(11): 1139-1153. |
3 | 章学来. 空调蓄冷蓄热技术[M]. 大连: 大连海事大学出版社, 2006: 3. |
Zhang X L. Air Conditioning Cold and Heat Storage Technology[M]. Dalian: Dalian Maritime University Press, 2006: 3. | |
4 | Qu S L, Ma F, Ji R, et al. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294-301. |
5 | Dincer I, Dost S, Li X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171. |
6 | 辛岳芝, 宋尚平, 曲志光. 空气源热泵加冷水机组耦合水蓄能系统在某工程中的应用[J]. 暖通空调, 2022, 52(1): 24-29. |
Xin Y Z, Song S P, Qu Z G. Application of air-source heat pump and water chiller coupled with water energy storage system to a project[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 24-29. | |
7 | 齐月松, 岳玉亮, 刘天一, 等. 地源热泵结合水蓄能系统应用分析[J]. 暖通空调, 2010, 40(5): 94-97. |
Qi Y S, Yue Y L, Liu T Y, et al. Application analysis of combined ground-source heat pump and water energy storage systems[J]. Heating Ventilating & Air Conditioning, 2010, 40(5): 94-97. | |
8 | 龚欣欣. 污水源热泵+水蓄能系统运行技术经济性分析[D]. 邯郸: 河北工程大学, 2015. |
Gong X X. The running technical and economic analysis of sewage-source heat pump+water storage system[D]. Handan: Hebei University of Engineering, 2015. | |
9 | Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermal energy storage for power generation (Part 1): Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
10 | 章学来, 王为, 李志伟, 等. 一种相变蓄热材料及其蓄热热回收的实验研究[J]. 制冷技术, 2012, 32(2): 15-18. |
Zhang X L, Wang W, Li Z W, et al. Experimental study of a phase change material and combined thermal energy storage with heat recovery[J]. Chinese Journal of Refrigeration Technology, 2012, 32(2): 15-18. | |
11 | 关靖馨. 太阳能融冰蓄热供热热泵系统研究[D]. 秦皇岛: 燕山大学, 2019. |
Guan J X. Research on solar deicing heat storage & heat supply heat pump system[D]. Qinhuangdao: Yanshan University, 2019. | |
12 | 武潇, 吴荣华, 吴昊. 冷水相变能热泵系统性能实验分析[J]. 青岛大学学报(工程技术版), 2019, 34(1): 105-110. |
Wu X, Wu R H, Wu H. Experimental study of cold water phase change energy heat pump system[J]. Journal of Qingdao University (Engineering & Technology Edition), 2019, 34(1): 105-110. | |
13 | 刘志斌, 吴荣华, 于灏. 水相变能热泵供热系统运行测试[J]. 暖通空调, 2019, 49(1): 96-100. |
Liu Z B, Wu R H, Yu H. Operation test for heat pump heating system using latent heat of water transformation[J]. Heating Ventilating & Air Conditioning, 2019, 49(1): 96-100. | |
14 | 胡文举, 胡鹏程, 邵正日, 等. 低温蓄能型太阳能辅助空气源热泵系统供热与蓄热特性研究[J]. 可再生能源, 2021, 39(11): 1455-1462. |
Hu W J, Hu P C, Shao Z R, et al. Experimental study on characteristics and performance of solarassisted air source heat pump based on low temperature thermal energy storage[J]. Renewable Energy Resources, 2021, 39(11): 1455-1462. | |
15 | Diallo T M O, Yu M, Zhou J Z, et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy, 2019, 167: 866-888. |
16 | Plytaria M T, Tzivanidis C, Bellos E, et al. Energetic investigation of solar assisted heat pump underfloor heating systems with and without phase change materials[J]. Energy Conversion and Management, 2018, 173: 626-639. |
17 | 邵索拉, 张欢, 由世俊, 等. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
Shao S L, Zhang H, You S J, et al. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489. | |
18 | 范文英, 蒋绿林, 蔡宝瑞, 等. 空气源相变储能复合热泵系统的运行分析[J]. 可再生能源, 2021, 39(9): 1175-1182. |
Fan W Y, Jiang L L, Cai B R, et al. Operation analysis of air source phase change energy storage compound heat pump system[J]. Renewable Energy Resources, 2021, 39(9): 1175-1182. | |
19 | 郭枭, 邱云峰, 史志国, 等. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395. |
Guo X, Qiu Y F, Shi Z G, et al. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395. | |
20 | 韩宗伟, 郑茂余, 刘威, 等. 严寒地区太阳能-土壤源热泵相变蓄热供暖系统[J]. 太阳能学报, 2006, 27(12): 1214-1218. |
Han Z W, Zheng M Y, Liu W, et al. Experimental research on solar assisted ground source heat pump heating system with a latent heat storage tank in severe cold area[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1214-1218. | |
21 | Yan T, Wang R Z, Li T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
22 | 韩冰川. 基于溶液储能的远距离输运供能能量系统及其应用研究[D]. 合肥: 中国科学技术大学, 2019. |
Han B C. Study on long distance transportation energy supply system and its application based on solution storage[D]. Hefei: University of Science and Technology of China, 2019. | |
23 | Han B C, Cheng W L, Li Y Y, et al. Thermodynamic analysis of heat driven combined cooling heating and power system (CCHP) with energy storage for long distance transmission[J]. Energy Conversion and Management, 2017, 154: 102-117. |
24 | Gao J T, Xu Z Y, Wang R Z. Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density[J]. Applied Energy, 2020, 262: 114476. |
25 | N'Tsoukpoe K E. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104: 2-15. |
26 | Yan G, Hu H, Yu J. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a[J]. Applied Thermal Engineering, 2015, 75: 994-1000. |
27 | Colorado D, Rivera W. Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration[J]. Applied Thermal Engineering, 2015, 87: 273-285. |
28 | Cimsit C, Ozturk I T. Analysis of compression-absorption cascade refrigeration cycles[J]. Applied Thermal Engineering, 2012, 40: 311-317. |
29 | Chu P, Wang H, Chen J, et al. Experiment investigation on a LiBr-H2O concentration difference cold storage system driven by vapor compression heat pump[J]. Solar Energy, 2021, 214: 294-309. |
30 | He H, Wang L, Yuan J, et al. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle[J]. Energy Conversion and Management, 2019, 201: 112153. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[4] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[5] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[6] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[7] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[8] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Yixiu DONG, Ruzhu WANG. High temperature heat pump: cycle configurations, working fluids and application potentials [J]. CIESC Journal, 2023, 74(1): 133-144. |
[14] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[15] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||