CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 329-337.DOI: 10.11949/0438-1157.20221620
• Energy and environmental engineering • Previous Articles Next Articles
Minghui CHANG(), Lin WANG(
), Jiajia YUAN, Yifei CAO
Received:
2022-11-15
Revised:
2022-12-25
Online:
2023-09-27
Published:
2023-06-05
Contact:
Lin WANG
通讯作者:
王林
作者简介:
常明慧(1998—),女,硕士研究生,1980597284@qq.com
基金资助:
CLC Number:
Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump[J]. CIESC Journal, 2023, 74(S1): 329-337.
常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337.
Add to citation manager EndNote|Ris|BibTeX
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
Table 1 State parameters under standard design conditions
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
Table 2 Comparison of initial investment and operating costs of three systems
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
Table 3 Comparison of annual costs of three systems
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
1 | Mahmoud M, Ramadan M, Naher S, et al. The impacts of different heating systems on the environment: a review[J]. Science of the Total Environment, 2021, 766: 142625. |
2 | Hasnain S M. Review on sustainable thermal energy storage technologies(Part Ⅱ): Cool thermal storage[J]. Energy Conversion and Management, 1998, 39(11): 1139-1153. |
3 | 章学来. 空调蓄冷蓄热技术[M]. 大连: 大连海事大学出版社, 2006: 3. |
Zhang X L. Air Conditioning Cold and Heat Storage Technology[M]. Dalian: Dalian Maritime University Press, 2006: 3. | |
4 | Qu S L, Ma F, Ji R, et al. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294-301. |
5 | Dincer I, Dost S, Li X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171. |
6 | 辛岳芝, 宋尚平, 曲志光. 空气源热泵加冷水机组耦合水蓄能系统在某工程中的应用[J]. 暖通空调, 2022, 52(1): 24-29. |
Xin Y Z, Song S P, Qu Z G. Application of air-source heat pump and water chiller coupled with water energy storage system to a project[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 24-29. | |
7 | 齐月松, 岳玉亮, 刘天一, 等. 地源热泵结合水蓄能系统应用分析[J]. 暖通空调, 2010, 40(5): 94-97. |
Qi Y S, Yue Y L, Liu T Y, et al. Application analysis of combined ground-source heat pump and water energy storage systems[J]. Heating Ventilating & Air Conditioning, 2010, 40(5): 94-97. | |
8 | 龚欣欣. 污水源热泵+水蓄能系统运行技术经济性分析[D]. 邯郸: 河北工程大学, 2015. |
Gong X X. The running technical and economic analysis of sewage-source heat pump+water storage system[D]. Handan: Hebei University of Engineering, 2015. | |
9 | Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermal energy storage for power generation (Part 1): Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
10 | 章学来, 王为, 李志伟, 等. 一种相变蓄热材料及其蓄热热回收的实验研究[J]. 制冷技术, 2012, 32(2): 15-18. |
Zhang X L, Wang W, Li Z W, et al. Experimental study of a phase change material and combined thermal energy storage with heat recovery[J]. Chinese Journal of Refrigeration Technology, 2012, 32(2): 15-18. | |
11 | 关靖馨. 太阳能融冰蓄热供热热泵系统研究[D]. 秦皇岛: 燕山大学, 2019. |
Guan J X. Research on solar deicing heat storage & heat supply heat pump system[D]. Qinhuangdao: Yanshan University, 2019. | |
12 | 武潇, 吴荣华, 吴昊. 冷水相变能热泵系统性能实验分析[J]. 青岛大学学报(工程技术版), 2019, 34(1): 105-110. |
Wu X, Wu R H, Wu H. Experimental study of cold water phase change energy heat pump system[J]. Journal of Qingdao University (Engineering & Technology Edition), 2019, 34(1): 105-110. | |
13 | 刘志斌, 吴荣华, 于灏. 水相变能热泵供热系统运行测试[J]. 暖通空调, 2019, 49(1): 96-100. |
Liu Z B, Wu R H, Yu H. Operation test for heat pump heating system using latent heat of water transformation[J]. Heating Ventilating & Air Conditioning, 2019, 49(1): 96-100. | |
14 | 胡文举, 胡鹏程, 邵正日, 等. 低温蓄能型太阳能辅助空气源热泵系统供热与蓄热特性研究[J]. 可再生能源, 2021, 39(11): 1455-1462. |
Hu W J, Hu P C, Shao Z R, et al. Experimental study on characteristics and performance of solarassisted air source heat pump based on low temperature thermal energy storage[J]. Renewable Energy Resources, 2021, 39(11): 1455-1462. | |
15 | Diallo T M O, Yu M, Zhou J Z, et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy, 2019, 167: 866-888. |
16 | Plytaria M T, Tzivanidis C, Bellos E, et al. Energetic investigation of solar assisted heat pump underfloor heating systems with and without phase change materials[J]. Energy Conversion and Management, 2018, 173: 626-639. |
17 | 邵索拉, 张欢, 由世俊, 等. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
Shao S L, Zhang H, You S J, et al. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489. | |
18 | 范文英, 蒋绿林, 蔡宝瑞, 等. 空气源相变储能复合热泵系统的运行分析[J]. 可再生能源, 2021, 39(9): 1175-1182. |
Fan W Y, Jiang L L, Cai B R, et al. Operation analysis of air source phase change energy storage compound heat pump system[J]. Renewable Energy Resources, 2021, 39(9): 1175-1182. | |
19 | 郭枭, 邱云峰, 史志国, 等. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395. |
Guo X, Qiu Y F, Shi Z G, et al. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395. | |
20 | 韩宗伟, 郑茂余, 刘威, 等. 严寒地区太阳能-土壤源热泵相变蓄热供暖系统[J]. 太阳能学报, 2006, 27(12): 1214-1218. |
Han Z W, Zheng M Y, Liu W, et al. Experimental research on solar assisted ground source heat pump heating system with a latent heat storage tank in severe cold area[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1214-1218. | |
21 | Yan T, Wang R Z, Li T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
22 | 韩冰川. 基于溶液储能的远距离输运供能能量系统及其应用研究[D]. 合肥: 中国科学技术大学, 2019. |
Han B C. Study on long distance transportation energy supply system and its application based on solution storage[D]. Hefei: University of Science and Technology of China, 2019. | |
23 | Han B C, Cheng W L, Li Y Y, et al. Thermodynamic analysis of heat driven combined cooling heating and power system (CCHP) with energy storage for long distance transmission[J]. Energy Conversion and Management, 2017, 154: 102-117. |
24 | Gao J T, Xu Z Y, Wang R Z. Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density[J]. Applied Energy, 2020, 262: 114476. |
25 | N'Tsoukpoe K E. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104: 2-15. |
26 | Yan G, Hu H, Yu J. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a[J]. Applied Thermal Engineering, 2015, 75: 994-1000. |
27 | Colorado D, Rivera W. Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration[J]. Applied Thermal Engineering, 2015, 87: 273-285. |
28 | Cimsit C, Ozturk I T. Analysis of compression-absorption cascade refrigeration cycles[J]. Applied Thermal Engineering, 2012, 40: 311-317. |
29 | Chu P, Wang H, Chen J, et al. Experiment investigation on a LiBr-H2O concentration difference cold storage system driven by vapor compression heat pump[J]. Solar Energy, 2021, 214: 294-309. |
30 | He H, Wang L, Yuan J, et al. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle[J]. Energy Conversion and Management, 2019, 201: 112153. |
[1] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[2] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[3] | Xiaoqiao QIN, Hongbo TAN, Na WEN. Thermodynamic and economic analysis of air separation unit with energy storage and generation [J]. CIESC Journal, 2024, 75(7): 2409-2421. |
[4] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[5] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
[6] | Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle [J]. CIESC Journal, 2024, 75(5): 2047-2059. |
[7] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[8] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[9] | Xinzi ZHOU, Zenghui LI, Xianyang MENG, Jiangtao WU. Experimental study on viscosity of high purity air at low temperatures [J]. CIESC Journal, 2024, 75(3): 782-788. |
[10] | Guodong ZHAO, Zhuo XIONG, Yongchun ZHAO, Junying ZHANG. Detoxification of hexavalent chromium compounds in incineration fly ash by carbothermal reduction [J]. CIESC Journal, 2024, 75(10): 3730-3741. |
[11] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[12] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[13] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[14] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[15] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||