CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4968-4978.DOI: 10.11949/0438-1157.20231196
• Energy and environmental engineering • Previous Articles Next Articles
Shijun LIU1(), Anqing ZHENG1,2, Xiaoli CHEN1, Juan FU1(), Qiucheng SU1
Received:
2023-11-20
Revised:
2023-12-14
Online:
2024-02-19
Published:
2023-12-25
Contact:
Juan FU
刘世君1(), 郑安庆1,2, 陈晓丽1, 付娟1(), 苏秋成1
通讯作者:
付娟
作者简介:
刘世君(1990—),男,硕士研究生,实验师,liusj@ms.giec.ac.cn
基金资助:
CLC Number:
Shijun LIU, Anqing ZHENG, Xiaoli CHEN, Juan FU, Qiucheng SU. Study on pyrolysis characteristics of cellulose-enhanced epoxy resin composites[J]. CIESC Journal, 2023, 74(12): 4968-4978.
刘世君, 郑安庆, 陈晓丽, 付娟, 苏秋成. 纤维素增强环氧树脂复合材料热解特性研究[J]. 化工学报, 2023, 74(12): 4968-4978.
Add to citation manager EndNote|Ris|BibTeX
样品编号 | 原料配比/%(质量分数) | 固化温度与时间 | |
---|---|---|---|
DGEBA+DDM | 纤维素 | ||
EP | 100 | 0 | 100℃ 2 h+ 150℃ 2 h |
EP-10Cell | 90 | 10 | |
EP-20Cell | 80 | 20 | |
EP-30Cell | 70 | 30 |
Table 1 Curing ratio and experimental conditions
样品编号 | 原料配比/%(质量分数) | 固化温度与时间 | |
---|---|---|---|
DGEBA+DDM | 纤维素 | ||
EP | 100 | 0 | 100℃ 2 h+ 150℃ 2 h |
EP-10Cell | 90 | 10 | |
EP-20Cell | 80 | 20 | |
EP-30Cell | 70 | 30 |
步骤 | Starink积分法 |
---|---|
1 | 获得至少在三种加热速率下转化率α与温度T的关系 |
2 | 在不同加热速率下选定α值时计算ln(β/T1.92)的值 |
3 | 绘制在选定α值下ln(β/T1.92)与1/T的关系,并确定活化能E |
Table 2 The activation energy calculation flow of Starink integral method
步骤 | Starink积分法 |
---|---|
1 | 获得至少在三种加热速率下转化率α与温度T的关系 |
2 | 在不同加热速率下选定α值时计算ln(β/T1.92)的值 |
3 | 绘制在选定α值下ln(β/T1.92)与1/T的关系,并确定活化能E |
参数 | 升温速率/ (℃/min) | 纤维素 | EP | EP-10Cell | EP-20Cell | EP-30Cell | |||
---|---|---|---|---|---|---|---|---|---|
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | ||||
Ychar /% | 5 | 0.37 | 17.63 | 7.93 | 15.53 | 5.89 | 13.43 | 9.38 | 11.33 |
15 | 2.39 | 16.67 | 6.16 | 15.24 | 7.49 | 13.82 | 6.45 | 12.39 | |
30 | 5.41 | 15.43 | 7.90 | 14.43 | 7.08 | 13.43 | 10.61 | 12.42 | |
T0 /℃ | 5 | 293.69 | 349.40 | 300.57 | 339.47 | 291.48 | 315.46 | 293.92 | 296.42 |
15 | 308.45 | 370.71 | 322.75 | 367.43 | 312.82 | 348.60 | 314.78 | 313.23 | |
30 | 320.11 | 382.04 | 335.20 | 367.98 | 323.84 | 333.22 | 328.39 | 326.60 | |
Tmax /℃ | 5 | 322.50 | 375.00 | 365.00 | 375.00 | 362.50 | 375.00 | 365.00 | 375.00 |
15 | 342.50 | 395.00 | 390 | 395.00 | 387.50 | 395.00 | 390 | 395.00 | |
30 | 360 | 407.50 | 407.50 | 407.50 | 405.00 | 407.50 | 407.50 | 407.50 | |
Tf /℃ | 5 | 349.66 | 432.55 | 428.58 | 432.84 | 426.32 | 433.19 | 422.65 | 433.64 |
15 | 370.83 | 454.20 | 452.43 | 454.45 | 450.27 | 454.77 | 446.96 | 455.21 | |
30 | 388.88 | 472.79 | 468.40 | 473.30 | 465.17 | 473.92 | 462.39 | 474.69 | |
(dm/dTmax)/(%/℃) | 5 | -3.10 | -1.90 | -1.50 | -1.71 | -1.36 | -1.53 | -1.38 | -1.34 |
15 | -2.67 | -1.97 | -1.53 | -1.78 | -1.34 | -1.59 | -1.43 | -1.39 | |
30 | -2.35 | -1.84 | -1.47 | -1.66 | -1.34 | -1.48 | -1.35 | -1.31 |
Table 3 Characteristic parameters of TGA/DTG curves of EP-10Cell, EP-20Cell and EP-30Cell
参数 | 升温速率/ (℃/min) | 纤维素 | EP | EP-10Cell | EP-20Cell | EP-30Cell | |||
---|---|---|---|---|---|---|---|---|---|
Exp. | Pred. | Exp. | Pred. | Exp. | Pred. | ||||
Ychar /% | 5 | 0.37 | 17.63 | 7.93 | 15.53 | 5.89 | 13.43 | 9.38 | 11.33 |
15 | 2.39 | 16.67 | 6.16 | 15.24 | 7.49 | 13.82 | 6.45 | 12.39 | |
30 | 5.41 | 15.43 | 7.90 | 14.43 | 7.08 | 13.43 | 10.61 | 12.42 | |
T0 /℃ | 5 | 293.69 | 349.40 | 300.57 | 339.47 | 291.48 | 315.46 | 293.92 | 296.42 |
15 | 308.45 | 370.71 | 322.75 | 367.43 | 312.82 | 348.60 | 314.78 | 313.23 | |
30 | 320.11 | 382.04 | 335.20 | 367.98 | 323.84 | 333.22 | 328.39 | 326.60 | |
Tmax /℃ | 5 | 322.50 | 375.00 | 365.00 | 375.00 | 362.50 | 375.00 | 365.00 | 375.00 |
15 | 342.50 | 395.00 | 390 | 395.00 | 387.50 | 395.00 | 390 | 395.00 | |
30 | 360 | 407.50 | 407.50 | 407.50 | 405.00 | 407.50 | 407.50 | 407.50 | |
Tf /℃ | 5 | 349.66 | 432.55 | 428.58 | 432.84 | 426.32 | 433.19 | 422.65 | 433.64 |
15 | 370.83 | 454.20 | 452.43 | 454.45 | 450.27 | 454.77 | 446.96 | 455.21 | |
30 | 388.88 | 472.79 | 468.40 | 473.30 | 465.17 | 473.92 | 462.39 | 474.69 | |
(dm/dTmax)/(%/℃) | 5 | -3.10 | -1.90 | -1.50 | -1.71 | -1.36 | -1.53 | -1.38 | -1.34 |
15 | -2.67 | -1.97 | -1.53 | -1.78 | -1.34 | -1.59 | -1.43 | -1.39 | |
30 | -2.35 | -1.84 | -1.47 | -1.66 | -1.34 | -1.48 | -1.35 | -1.31 |
样品 | E0/(kJ/mol) |
---|---|
纤维素 | 152.4 |
EP | 192.4 |
EP-10Cell | 145.1 |
EP-20Cell | 140.5 |
EP-30Cell | 137.8 |
Table 4 The average activation energy in the stable region (α=20%—70%)
样品 | E0/(kJ/mol) |
---|---|
纤维素 | 152.4 |
EP | 192.4 |
EP-10Cell | 145.1 |
EP-20Cell | 140.5 |
EP-30Cell | 137.8 |
种类编号 | 定义 |
---|---|
LMW | 低分子量物种 |
1-B | 化合物具有一个没有氧或氮的单一苯环 |
1-B-O | 含有一个含有氧的单个苯环的化合物 |
1-B-N | 具有单一苯环和氮气特征的化合物 |
2-B | 具有两个苯环而含氧或氮的化合物 |
2-B-O | 具有两个苯环的化合物 |
2-B-N | 具有两个苯环和氮的化合物 |
其他 | 未识别或杂质 |
Table 5 Classification method of epoxy resin pyrolysis products
种类编号 | 定义 |
---|---|
LMW | 低分子量物种 |
1-B | 化合物具有一个没有氧或氮的单一苯环 |
1-B-O | 含有一个含有氧的单个苯环的化合物 |
1-B-N | 具有单一苯环和氮气特征的化合物 |
2-B | 具有两个苯环而含氧或氮的化合物 |
2-B-O | 具有两个苯环的化合物 |
2-B-N | 具有两个苯环和氮的化合物 |
其他 | 未识别或杂质 |
产物类别 | 占比/% | |||||||
---|---|---|---|---|---|---|---|---|
LMS | 1-B | 1-B-O | 1-B-N | 2-B | 2-B-O | 2-B-N | Others | |
EP | 1.52 | 0.49 | 9.71 | 0.42 | 0.14 | 66.36 | 15.34 | 6.01 |
EP-10Cell | 1.45 | 0.47 | 10.20 | 0.30 | 0.18 | 68.42 | 14.60 | 4.38 |
EP-20Cell | 1.65 | 0.50 | 13.34 | 0.35 | 0.16 | 68.15 | 11.70 | 4.16 |
EP-30Cell | 1.27 | 0.41 | 11.00 | 0.32 | 0.14 | 70.53 | 12.45 | 3.88 |
Table 6 Class distribution during fast pyrolysis of epoxy resin
产物类别 | 占比/% | |||||||
---|---|---|---|---|---|---|---|---|
LMS | 1-B | 1-B-O | 1-B-N | 2-B | 2-B-O | 2-B-N | Others | |
EP | 1.52 | 0.49 | 9.71 | 0.42 | 0.14 | 66.36 | 15.34 | 6.01 |
EP-10Cell | 1.45 | 0.47 | 10.20 | 0.30 | 0.18 | 68.42 | 14.60 | 4.38 |
EP-20Cell | 1.65 | 0.50 | 13.34 | 0.35 | 0.16 | 68.15 | 11.70 | 4.16 |
EP-30Cell | 1.27 | 0.41 | 11.00 | 0.32 | 0.14 | 70.53 | 12.45 | 3.88 |
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
p-Isopropenylphenol | Phenol | p-Cumenol | Phenol, 2-methyl- | p-Cresol | |
EP | 41.49 | 30.00 | 16.54 | 8.44 | 3.53 |
EP-10Cell | 39.54 | 30.90 | 16.47 | 9.13 | 3.96 |
EP-20Cell | 40.84 | 32.04 | 16.26 | 8.14 | 2.71 |
EP-30Cell | 40.92 | 31.77 | 16.40 | 7.84 | 3.06 |
Table 7 Percentages of the main product in class 1-B-O
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
p-Isopropenylphenol | Phenol | p-Cumenol | Phenol, 2-methyl- | p-Cresol | |
EP | 41.49 | 30.00 | 16.54 | 8.44 | 3.53 |
EP-10Cell | 39.54 | 30.90 | 16.47 | 9.13 | 3.96 |
EP-20Cell | 40.84 | 32.04 | 16.26 | 8.14 | 2.71 |
EP-30Cell | 40.92 | 31.77 | 16.40 | 7.84 | 3.06 |
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
Phenol, 4,4′-(1-methylethylidene)bis- | 2-(4′-Hydroxyphenyl)-2-(4′-methoxyphenyl)propane | 4-(2-(4-(Ethynyloxy)phenyl)propan-2-yl)phenol | 4-(2-(4-(2-Hydroxyethoxy)phenyl)propan-2-yl)phenol | 4-(2-(4-(2-Hydroxypropoxy)phenyl)propan-2-yl)phenol | |
EP | 63.79 | 13.09 | 12.15 | 6.59 | 4.39 |
EP-10Cell | 69.45 | 16.32 | 9.38 | 1.70 | 3.15 |
EP-20Cell | 73.52 | 14.36 | 7.22 | 1.72 | 3.18 |
EP-30Cell | 72.49 | 14.77 | 7.86 | 1.80 | 3.08 |
Table 8 Percentages of the main product in class 2-B-O
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
Phenol, 4,4′-(1-methylethylidene)bis- | 2-(4′-Hydroxyphenyl)-2-(4′-methoxyphenyl)propane | 4-(2-(4-(Ethynyloxy)phenyl)propan-2-yl)phenol | 4-(2-(4-(2-Hydroxyethoxy)phenyl)propan-2-yl)phenol | 4-(2-(4-(2-Hydroxypropoxy)phenyl)propan-2-yl)phenol | |
EP | 63.79 | 13.09 | 12.15 | 6.59 | 4.39 |
EP-10Cell | 69.45 | 16.32 | 9.38 | 1.70 | 3.15 |
EP-20Cell | 73.52 | 14.36 | 7.22 | 1.72 | 3.18 |
EP-30Cell | 72.49 | 14.77 | 7.86 | 1.80 | 3.08 |
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
4,4′-Methylenebis(N-methylaniline) | Benzenamine, 4,4′- methylenebis(N,N-dimethyl-) | N,N-Dimethyl-4-(4-(methylamino)benzyl)aniline | Benzenamine, 4,4′-methylenebis- | Oxazole, 2-(4-methoxyphenyl)-5-phenyl- | |
EP | 30.53 | 24.76 | 22.95 | 17.50 | 4.27 |
EP-10Cell | 31.15 | 32.04 | 22.81 | 8.17 | 5.83 |
EP-20Cell | 21.51 | 39.60 | 18.18 | 11.95 | 8.76 |
EP-30Cell | 24.16 | 35.14 | 22.71 | 10.47 | 7.52 |
Table 9 Percentages of the main product in class 2-B-N
产物类别 | 含量/% | ||||
---|---|---|---|---|---|
4,4′-Methylenebis(N-methylaniline) | Benzenamine, 4,4′- methylenebis(N,N-dimethyl-) | N,N-Dimethyl-4-(4-(methylamino)benzyl)aniline | Benzenamine, 4,4′-methylenebis- | Oxazole, 2-(4-methoxyphenyl)-5-phenyl- | |
EP | 30.53 | 24.76 | 22.95 | 17.50 | 4.27 |
EP-10Cell | 31.15 | 32.04 | 22.81 | 8.17 | 5.83 |
EP-20Cell | 21.51 | 39.60 | 18.18 | 11.95 | 8.76 |
EP-30Cell | 24.16 | 35.14 | 22.71 | 10.47 | 7.52 |
1 | Ma C, Sánchez-Rodríguez D, Kamo T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: product characteristics and kinetics[J]. Journal of Hazardous Materials, 2021, 412: 125329. |
2 | 纪荣彬, 陈婷, 彭超华, 等. 有机磷/硼杂化小分子阻燃改性环氧树脂[J]. 化工学报, 2021, 72(7): 3856-3868. |
Ji R B, Chen T, Peng C H, et al. Flame retardant epoxy resin composites modified with organophosphorus and boron hybrid molecules[J]. CIESC Journal, 2021, 72(7): 3856-3868. | |
3 | 田秀娟, 王忠卫, 于青, 等. 含磷阻燃剂阻燃环氧树脂热降解动力学[J]. 化工学报, 2014, 65(12): 5082-5089. |
Tian X J, Wang Z W, Yu Q, et al. Kinetics of thermal decomposition of epoxy resins modified with phosphorus-containing flame retardant[J]. CIESC Journal, 2014, 65(12): 5082-5089. | |
4 | Das S, Yokozeki T. A brief review of modified conductive carbon/glass fibre reinforced composites for structural applications: lightning strike protection, electromagnetic shielding, and strain sensing[J]. Composites Part C: Open Access, 2021, 5: 100162. |
5 | 邹祺, 叶逸云, 焦俊科, 等. 碳纤维增强热固性复合材料-钛合金激光连接接头性能分析[J]. 航空学报, 2022, 43(2): 625037. |
Zou Q, Ye Y Y, Jiao J K, et al. Performance analysis of carbon fiber reinforced thermalsetting composite-titanium alloy laser joint[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 625037. | |
6 | 张灵静, 陈桦, 蒋建军, 等. 碳纤维增强热固性复合材料回收再利用技术研究进展[J]. 工程塑料应用, 2019, 47(7): 134-140, 150. |
Zhang L J, Chen H, Jiang J J, et al. Research progress on recycling and reuse technology of carbon fiber reinforced thermosetting composites[J]. Engineering Plastics Application, 2019, 47(7): 134-140, 150. | |
7 | 王琪, 罗胜利, 王强, 等. 电子废弃物中环氧树脂的无害化和资源化处置现状和对策研究[J]. 环境工程, 2011, 29(S1): 357-359, 367. |
Wang Q, Luo S L, Wang Q, et al. Study on the present situation and countermeasures of harmless and resource disposal of epoxy resin in electronic waste[J]. Environmental Engineering, 2011, 29(S1): 357-359, 367. | |
8 | 王芳, 刘玉卿, 海热提. 防溴型环氧树脂电路板热解动力学分析[J]. 化工学报, 2011, 62(10): 2945-2950. |
Wang F, Liu Y Q, Hai R T. Pyrolysis kinetics of anti-Br printed circuit boards made epoxy resin[J]. CIESC Journal, 2011, 62(10): 2945-2950. | |
9 | 董卿, 尤飞, 蒋军成, 等. 废弃FR4环氧树脂覆铜板热解特性及固体残余物组成[J]. 安全与环境学报, 2016, 16(5): 265-269. |
Dong Q, You F, Jiang J C, et al. Pyrolysis properties and the composition of the solid residues of the waste FR4 epoxy copper clad panels[J]. Journal of Safety and Environment, 2016, 16(5): 265-269. | |
10 | Anuar Sharuddin S D, Abnisa F, Wan Daud W M A, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
11 | Kim K W, Jeong J S, An K H, et al. A low energy recycling technique of carbon fibers-reinforced epoxy matrix composites[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 618-624. |
12 | Park H S, Han Y S, Park J H. Massive recycling of waste mobile phones: pyrolysis, physical treatment, and pyrometallurgical processing of insoluble residue[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14119-14125. |
13 | 陈瑞哲, 程磊磊, 顾菁, 等. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
Chen R Z, Cheng L L, Gu J, et al. Research progress in chemical recovery technology of fiber-reinforced polymer composites[J]. CIESC Journal, 2023, 74(3): 981-994. | |
14 | 李传强, 刘思媛, 王东升, 等. 压力反应釜中低温热裂解废旧LLDPE塑料制备PE蜡[J]. 化工学报, 2019, 70(12): 4856-4863. |
Li C Q, Liu S Y, Wang D S, et al. Preparation of PE wax by pyrolysis of LLDPE waste plastic in a pressure reactor under low temperature[J]. CIESC Journal, 2019, 70(12): 4856-4863. | |
15 | Engamba Esso S B, Zhe X, Chaiwat W, et al. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: significance of operating conditions and interaction mechanism[J]. Biomass and Bioenergy, 2022, 159: 106415. |
16 | Huang S X, Qin J, Chen T, et al. Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: kinetic and products distribution[J]. Science of the Total Environment, 2022, 802: 149752. |
17 | Xie T, Zhao L X, Yao Z L, et al. Co-pyrolysis of biomass and polyethylene: insights into characteristics, kinetic and evolution paths of the reaction process[J]. Science of the Total Environment, 2023, 897: 165443. |
18 | 王润涛, 罗泽军, 王储, 等. 生物油蒸馏残渣与废弃塑料催化共热解协同作用的研究[J]. 化工学报, 2022, 73(11): 5088-5097. |
Wang R T, Luo Z J, Wang C, et al. Synergistic effect during catalytic co-pyrolysis of bio-oil distillation residue and waste plastic[J]. CIESC Journal, 2022, 73(11): 5088-5097. | |
19 | Chattopadhyay J, Pathak T, Srivastava R, et al. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis[J]. Energy, 2016, 103: 513-521. |
20 | Wang Z W, Burra K G, Lei T Z, et al. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals—a review[J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
21 | 王佳, 张助坤, 蒋剑春. 生物质与废塑料/橡胶共热解研究进展[J]. 林业工程学报, 2023, 8(2): 10-20. |
Wang J, Zhang Z K, Jiang J C. A review on co-pyrolysis of biomass and waste plastics/rubbers[J]. Journal of Forestry Engineering, 2023, 8(2): 10-20. | |
22 | 王志伟, 郭帅华, 吴梦鸽, 等. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
Wang Z W, Guo S H, Wu M G, et al. Recent advances on catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. | |
23 | 马中青, 丁紫霞, 李逍然, 等. 纤维素生物质与废塑料共催化热解制取富烃液体燃料的研究进展[J]. 燃料化学学报, 2023. DOI: 10.19906/j.cnki.JFCT.2023070 . |
Ma Z Q, Ding Z X, Li X R, et al. Recent progress on co-catalytic fast pyrolysis of biomass and waste plastics to produce hydrocarbon-rich liquid fuels[J]. Journal of Fuel Chemistry and Technology, 2023. DOI: 10.19906/j.cnki.JFCT.2023070 . | |
24 | 李晓娜, 潘超, 宋洋, 等. 典型塑料与生物质废弃物的共热解技术及高值化利用[J]. 环境科学研究, 2023, 36(9): 1765-1778. |
Li X N, Pan C, Song Y, et al. Review of co-pyrolysis technologies of typical plastic and biomass waste for value-added products[J]. Research of Environmental Sciences, 2023, 36(9): 1765-1778. | |
25 | 何冠宇, 赫玉欣, 张丽, 等. 天然纤维混杂增强树脂基复合材料的研究现状及应用[J]. 化工新型材料, 2023. DOI: 10.19817/j.cnki.issn.1006-3536.2024.01.032 . |
He G Y, He Y X, Zhang L, et al. Research and application status of natural fiber hybrid reinforced resin matrix composites[J]. New Chemical Materials, 2023. DOI: 10.19817/j.cnki.issn.1006-3536.2024.01.032 . | |
26 | Dong C S. Review of natural fibre-reinforced hybrid composites[J]. Journal of Reinforced Plastics and Composites, 2018, 37(5): 331-348. |
27 | 李允锋, 申世杰, 王静. 纤维增强树脂/木材复合材料的研究进展[J]. 林业机械与木工设备, 2009, 37(5): 10-12. |
Li Y F, Shen S J, Wang J. Research progress of fiber reinforced polymer/wood composites[J]. Forestry Machinery & Woodworking Equipment, 2009, 37(5): 10-12. | |
28 | 张萌, 冯冰涛, 王晓珂, 等. 天然纤维增强热塑性复合材料制备与应用研究进展[J]. 工程塑料应用, 2023, 51(10): 179-185. |
Zhang M, Feng B T, Wang X K, et al. Research progress in preparation and application of natural fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2023, 51(10): 179-185. | |
29 | Karimah A, Ridho M R, Munawar S S, et al. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations[J]. Journal of Materials Research and Technology, 2021, 13: 2442-2458. |
30 | Huang J L, Guo W W, Wang X, et al. Intrinsically flame retardant cardanol-based epoxy monomer for high-performance thermosets[J]. Polymer Degradation and Stability, 2021, 186: 109519. |
31 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
32 | Starink M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica Acta, 2003, 404(1/2): 163-176. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[9] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[10] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[11] | Zhangning CUI, Zixuan HU, Lei WU, Jun ZHOU, Gan YE, Tiantian LIU, Qiuli ZHANG, Yonghui SONG. Research progress on the water resistance of degradable cellulose-based materials [J]. CIESC Journal, 2023, 74(6): 2296-2307. |
[12] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[13] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[14] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[15] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||