CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4979-4987.DOI: 10.11949/0438-1157.20231079
• Energy and environmental engineering • Previous Articles Next Articles
Qun ZHENG1(), Xuzhao WEI1, Lexian DONG1, Jihao ZHANG2, Libin LEI1()
Received:
2023-10-24
Revised:
2023-12-19
Online:
2024-02-19
Published:
2023-12-25
Contact:
Libin LEI
郑群1(), 魏旭钊1, 董乐贤1, 张纪豪2, 雷励斌1()
通讯作者:
雷励斌
作者简介:
郑群(1997—),男,硕士研究生,zhengqun160158@163.com
基金资助:
CLC Number:
Qun ZHENG, Xuzhao WEI, Lexian DONG, Jihao ZHANG, Libin LEI. Study of the reconstruction method of distribution of relaxation times of electrochemical impedance spectroscopy based on elastic net regularization[J]. CIESC Journal, 2023, 74(12): 4979-4987.
郑群, 魏旭钊, 董乐贤, 张纪豪, 雷励斌. 基于弹性网正则化的电化学阻抗谱弛豫时间分布重构方法的研究[J]. 化工学报, 2023, 74(12): 4979-4987.
Add to citation manager EndNote|Ris|BibTeX
电化学 元器件 | 参数值 | 特征弛豫时间 | 特征频率 |
---|---|---|---|
0.860 Ω | |||
0.269 | |||
0.13 | |||
Table 1 Parameters of equivalent circuit
电化学 元器件 | 参数值 | 特征弛豫时间 | 特征频率 |
---|---|---|---|
0.860 Ω | |||
0.269 | |||
0.13 | |||
1 | 张婉晨, 陈晓阳, 吕秋秋, 等. Co掺杂SrTi0.3Fe0.7O3- δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
Zhang W C, Chen X Y, Lyu Q Q, et al. Performance and durability of cobalt doped SrTi0.3Fe0.7O3- δ anode SOFC fueled with by-product gas from chemical industry[J]. CIESC Journal, 2022, 73(9): 4079-4086. | |
2 | 郭祥, 乔金硕, 王振华, 等. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
Guo X, Qiao J S, Wang Z H, et al. Progress of structure for carbon-fueled solid oxide fuel cells[J]. CIESC Journal, 2023, 74(1): 290-302. | |
3 | 郑克晴, 孙亚, 闫阳天, 等. 一种热电协同增强的固体氧化物燃料电池新型连接件的数值模拟[J]. 化工学报, 2022, 73(12): 5572-5580. |
Zheng K Q, Sun Y, Yan Y T, et al. Numerical simulation of novel SOFC interconnector with thermoelectric co-enhancement[J]. CIESC Journal, 2022, 73(12): 5572-5580. | |
4 | Meng X Y, Wang Y, Zhao Y Q, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents[J]. Electrochimica Acta, 2020, 348: 136351. |
5 | Zhang D, Wang Y, Peng Y H, et al. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction[J]. Advanced Powder Materials, 2023, 2(4): 100129. |
6 | Zhang D, Zhou J, Luo Y, et al. Robust cobalt-free perovskite type electrospun nanofiber cathode for efficient electrochemical carbon dioxide reduction reaction[J]. Journal of Power Sources, 2023, 587: 233705. |
7 | Luo Y, Liu T, Wang Y, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells cathode: advances and perspective[J]. Chem Catalysis, 2023, 3(12): 100815. |
8 | 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850. |
Wang J, Li Y, Zhao H L. Synthesis and lithium storage performance of three-dimensional Co3O4 micro-flowers assembled with nanoparticles[J]. CIESC Journal, 2020, 71(4): 1844-1850. | |
9 | Lasia A. Electrochemical impedance spectroscopy and its applications[M]//Modern Aspects of Electrochemistry. Boston: Kluwer Academic Publishers, 2005: 143-248. |
10 | 王晟, 闫帅, 李浩秒, 等. 基于正则化方法的电池阻抗谱弛豫时间分布解析[J]. 中国电机工程学报, 2022, 42(9): 3177-3188. |
Wang S, Yan S, Li H M, et al. Distribution of relaxation times analysis from battery impedance spectroscopy using regularization method[J]. Proceedings of the CSEE, 2022, 42(9): 3177-3188. | |
11 | Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015, 184: 483-499. |
12 | Maradesa A, Py B, Quattrocchi E, et al. The probabilistic deconvolution of the distribution of relaxation times with finite Gaussian processes[J]. Electrochimica Acta, 2022, 413: 140119. |
13 | Li X, Ahmadi M, Collins L, et al. Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: exploiting structural-sparsity regularization and data-driven parameter tuning[J]. Electrochimica Acta, 2019, 313: 570-583. |
14 | Schlüter N, Ernst S, Schröder U. Direct access to the optimal regularization parameter in distribution of relaxation times analysis[J]. ChemElectroChem, 2020, 7(16): 3445-3458. |
15 | Melo B M G, Loureiro F J A, Fagg D P, et al. DFRTtoEIS: an easy approach to verify the consistency of a DFRT generated from an impedance spectrum[J]. Electrochimica Acta, 2021, 366: 137429. |
16 | Kobayashi K, Suzuki T S. Extended distribution of relaxation time analysis for electrochemical impedance spectroscopy[J]. Electrochemistry, 2022, 90(1): 017004. |
17 | Schlüter N, Ernst S, Schröder U. Finding the optimal regularization parameter in distribution of relaxation times analysis[J]. ChemElectroChem, 2019, 6(24): 6027-6037. |
18 | Shi W Y, Jia C, Zhang Y L, et al. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra[J]. Acta Physico Chimica Sinica, 2019, 35(5): 509-516. |
19 | Wang C L, Zhu G Y, Zhang P B, et al. Optimization procedures for the inversion of impedance spectra to the distribution of relaxation times[J]. Journal of Electroanalytical Chemistry, 2022, 911: 116199. |
20 | Ciucci F. Modeling electrochemical impedance spectroscopy[J]. Current Opinion in Electrochemistry, 2019, 13: 132-139. |
21 | 王静. 电阻抗成像的几种正则化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Wang J. Research on several regularization methods of electrical impedance tomography[D]. Harbin: Harbin Institute of Technology, 2015. | |
22 | Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2005, 67(2): 301-320. |
23 | 孙俊. 量子行为粒子群优化算法研究[D]. 无锡: 江南大学, 2009. |
Sun J. Research on quantum behavior particle swarm optimization algorithm[D]. Wuxi: Jiangnan University, 2009. | |
24 | 吴涛. 粒子群及量子行为粒子群优化算法的改进研究[D]. 成都: 西南交通大学, 2014. |
Wu T. Research on improvement of particle swarm optimization algorithm for particle swarm optimization and quantum behavior[D]. Chengdu: Southwest Jiaotong University, 2014. | |
25 | Saccoccio M, Wan T H, Chen C, et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and lasso regression methods —a theoretical and experimental study[J]. Electrochimica Acta, 2014, 147: 470-482. |
26 | Hahn M, Schindler S, Triebs L C, et al. Optimized process parameters for a reproducible distribution of relaxation times analysis of electrochemical systems[J]. Batteries, 2019, 5(2): 43. |
27 | Zhang Y X, Chen Y, Yan M F, et al. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2015, 283: 464-477. |
28 | Xu Q F, Ding X H, Jiang C X, et al. An elastic-net penalized expectile regression with applications[J]. Journal of Applied Statistics, 2020, 48(12): 2205-2230. |
29 | Weese J. A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization[J]. Computer Physics Communications, 1992, 69(1): 99-111. |
30 | Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat, No.04TH8753). Portland, OR, USA: IEEE, 2004: 325-331. |
31 | Sun J, Xu W B, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Conference on Cybernetics and Intelligent Systems. Singapore: IEEE, 2005: 111-116. |
32 | Sun J, Xu W B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C]//2005 IEEE International Conference on Systems, Man and Cybernetics. Waikoloa, HI, USA: IEEE, 2006: 3049-3054. |
33 | Fushiki T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and Computing, 2011, 21(2): 137-146. |
34 | Boukamp B A. A linear kronig-kramers transform test for immittance data validation[J]. Journal of the Electrochemical Society, 1995, 142(6): 1885-1894. |
35 | Schönleber M, Klotz D, Ivers-Tiffée E. A method for improving the robustness of linear Kramers-Kronig validity tests[J]. Electrochimica Acta, 2014, 131: 20-27. |
36 | Dong L X, Zheng Q, Mo Y Y, et al. An efficient multi-point impedance method for real-time monitoring the working state of solid oxide fuel cells[J]. Journal of Power Sources, 2023, 580: 233381. |
[1] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[2] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[3] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Li CHEN, Wenquan TAO. Numerical simulation on the effect of cathode stoichiometric ratio and flow field arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2023, 74(10): 4267-4276. |
[4] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[5] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[6] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[7] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[8] | Wenhuai LI, Wei ZHOU. Analysis of influencing factors and design strategies of high oxygen ion conductivity perovskite [J]. CIESC Journal, 2022, 73(4): 1455-1471. |
[9] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[10] | FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. |
[11] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
[12] | XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J]. CIESC Journal, 2021, 72(3): 1512-1520. |
[13] | HE Jizhe, LIU Mingyan, XU Yangshuhan. Study on anticorrosive properties of epoxy soybean oil resin coating [J]. CIESC Journal, 2021, 72(2): 1067-1077. |
[14] | ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack [J]. CIESC Journal, 2021, 72(1): 589-596. |
[15] | Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||